107 resultados para Conocimiento matemático
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Resumo:
Se presenta un análisis sobre los propósitos de la investigación del discurso matemático escolar, los tipos de discursos que se desarrollan en el aula, así como las contribuciones que ofrecen los estudios en este campo, particularmente, en la reconstrucción del discurso matemático escolar.
Resumo:
El objetivo de este trabajo de investigación es identificar las organizaciones praxeológicas que permiten la articulación de la noción de función afín con otras nociones tanto en el contexto matemático como extramatemático en la Educación Media en Brasil. Los análisis se apoyan en la Teoría Antropológica de lo didáctico de Chevallard (2001) y los enfoques teóricos en términos de marcos definidos por Douady (1992) y niveles de conocimiento que se esperan de los estudiantes según la definición de Robert (1997). Tres libros de texto que fueron analizados darán una visión general de las relaciones institucionales que sobreviven actualmente en Brasil. Observamos la existencia de diferentes formas de articulación que dependen de las técnicas desarrolladas, necesitando la atención de profesores que deben proponer el mayor número posible de situaciones para que sus estudiantes puedan aplicar la noción de función afín en diferentes tareas, sean ellas escolares o no.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
Esta investigación de corte cualitativo tiene el objetivo de estudiar cómo un grupo de estudiantes mexicanos de 16-18 años logra significar la relación entre las gráficas cartesianas de distancia-tiempo, velocidad-tiempo y aceleración-tiempo al interactuar en un entorno digital. Nuestra interpretación se basa en asumir que el conocimiento resulta de las acciones del sujeto cognoscente que se acerca a su objeto de conocimiento provisto de artefactos culturales de mediación. Las gráficas cartesianas atadas a la animación promueven en los estudiantes una actitud para expresar y explorar sus ideas a través de las representaciones simbólicas que ellos mismos producen. Los resultados sugieren que este tipo de experiencias puede ayudar a construir una sólida base para acceder a las ideas del Cálculo.
Resumo:
El presente trabajo propone una discusión acerca de las situaciones que surgen en la clase de matemática a causa de las incoherencias del discurso matemático escolar, que pueden encontrarse en todas las áreas de esta disciplina. Desde cuestiones relativas al cálculo, al análisis matemático o a la geometría, pueden verse discursos “partidos” entre lo que se define y lo que luego se hace y evalúa. Los docentes fomentan esa división, y los alumnos las asumen como parte del contrato didáctico.
Resumo:
Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.
Resumo:
La investigación tiene dos fases: 1) Se plantea a los estudiantes de primer ingreso a la Universidad Panamericana, Guadalajara, México la simplificación de la expresión algebraica ; analizándose las respuestas equivocadas con su posible origen. 2) Se hace un estudio con 7 profesores de educación media básica y media superior, en el cual, se les presenta la simplificación errónea (a la izq.) con la consigna de mencionar el origen del error y cómo le ayudarían al alumno. Alumnos cometen errores de muy diverso origen, y los profesores encuestados no siempre analizan a profundidad el origen del error cometido por este alumno.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.
Resumo:
El presente trabajo forma parte de una investigación en la línea de la construcción social del conocimiento. El tema central de este reporte es la construcción escolar del infinito y las dificultades que éste concepto presenta debido a su origen sociocultural por un lado y matemático por otro. Se produce entonces un choque entre esos dos infinitos: el construido socialmente y desconocido por la escuela, y el matemático, que se utiliza en la escuela, pero es desconocido por los alumnos. Para indagar sobre la naturaleza del infinito con que se trabaja en el aula, se presenta y analiza una actividad, centrada en el estudio de funciones, y en particular de la existencia y cálculo de asíntotas que fue llevada a cabo con alumnos de escuela media. Las respuestas demuestran que el infinito construido fuera de la escuela sigue marcando en ellos la forma en que el infinito funciona y que el infinito matemático les presenta sólo conflictos y dudas.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
En este trabajo se muestra la implementación, los resultados y las conclusiones de una prueba piloto para evaluar el valor propedéutico del aprendizaje matemático de todo el ciclo medio, teniendo en cuenta los requerimientos del ingreso universitario.
Resumo:
Ésta investigación se sitúa en la problemática del fracaso escolar en Matemática en estudiantes de Nivel Medio (Corica, Otero, 2005; Gascón et. al., 2001). Nuestro objetivo fue estudiar las ideas de alumnos y profesores acerca del saber matemático, su enseñanza y aprendizaje, para poder explorar los posibles factores que intervienen en el fracaso en Matemática de los estudiantes. En esta investigación se abordan aspectos didácticos a partir de la Teoría Antropológica de lo Didáctico (Chevallard, 1999), aspectos cognitivos a partir de la Teoría de Aprendizaje Significativo (Ausubel, 1976) y aspectos epistemológicos vinculadas al saber matemático a partir de las ideas de Klimovsky (2000). En este trabajo se presentan resultados de dos estudios realizados con estudiantes de Nivel Medio y un tercer estudio vinculado con profesores del mismo nivel.
Resumo:
La raíz cuadrada desempeña un papel fundamental en todos los niveles escolares, desde los básicos hasta los universitarios. La presente investigación se centra en estudiar este concepto desde el punto de vista de la aritmética, posteriormente del álgebra y por ultimo del cálculo, mediante el análisis de libros de texto y la aplicación de un cuestionario desde el nivel básico hasta el superior. Finalmente mostraremos concepciones específicas relativas a la raíz cuadrada que permanecen en los estudiantes.