93 resultados para Problemas de división-medida


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El estudio de la primera representación adquiere un papel determinante en la actividad de la resolución de problemas, ya que se presenta entre la percepción del problema y el proceso de resolución. El presente trabajo, plantea la posibilidad de desarrollar la formulación de problemas para enriquecer el contenido de la primera representación, permitiendo explorar nuevas representaciones para identificar la organización de sus relaciones y establecer su articulación en problemas contextualizados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente investigación, de orden cualitativo y en curso, forma parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura propuesta por Vergnaud (1995) en el “Isomorfismo de Medidas”. La propuesta teórica es basada en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, de dos, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vida cotidiana planteados en el aula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El propósito de este curso es el de compartir algunas reflexiones relacionadas con la estrategia metodológica de resolución de problemas matemáticos, revisar las ideas de Polya (1990), Schoenfeld (1985), del informe PISA, de la NCTM y especialmente el enfoque “Open Ended” (Becker y Shimada, 2005) utilizado por los japoneses en el aula. También se describen aspectos históricos de la utilización de tecnologías digitales en el proceso de resolución de problemas, principalmente las estrategias utilizadas por investigadores en inteligencia artificial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo hace parte del trabajo “Criterios y Prácticas de Evaluación en torno a la Multiplicación”, tesis de maestría en proceso, la cual intenta contribuir al desarrollo del proyecto de investigación “Modelos y Prácticas Evaluativas de las Matemáticas en la Educación Básica. El caso del Campo Multiplicativo”, proyecto financiado por Colciencias y la Universidad Pedagógica Nacional (C´odigo1108-11-11328). Se realiza en este escrito un análisis del proceso de aprendizaje en torno al concepto de multiplicación desde la perspectiva sociocultural. Es pertinente señalar que la multiplicación es un concepto que se encuentra estrechamente relacionado con otros como: división, fracción, razón, proporción, función lineal,. . . y que conforman lo que Vergnaud (1994) ha denominado el Campo Conceptual Multiplicativo (CCM), por lo que su aprendizaje integra la necesidad de conectar estos conceptos con un campo de problemas y situaciones de tipo multiplicativo. En este sentido cobra importancia la cita de Sfard, en tanto, por ejemplo el aprendizaje de este concepto requiere un largo periodo de tiempo. En la primera parte del artículo se plantean algunos presupuestos teóricos que se comparten y ayudan a fundamentarlo, posteriormente se explicita qué es lo que se entiende por aproximación sociocultural del aprendizaje de la multiplicación, integrando la noción de competencia multiplicativa y finalmente se presenta los análisis de dos ejemplos en los cuales se muestra la complejidad de la multiplicación, en tanto se videncia el desarrollo de competencias cada vez más complejas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo presentamos los resultados de un cuestionario formado por cuatro problemas abiertos, a través de los cuales evaluamos la comprensión de la idea de media aritmética. Analizamos los componentes del significado que asigna una muestra de 53 alumnos de educación secundaria a este concepto, y, en particular, su comprensión de propiedades numéricas de este concepto.