81 resultados para Conocimiento de matemáticas para la enseñanza
Resumo:
A partir de la pasada década comenzaron a tener auge, en el ámbito de la matemática educativa, las ideas de Vigotsky y su teoría psicológica; sin embargo, aún entre los docentes e investigadores latinoamericanos se conoce poco sobre los principales presupuestos de su teoría psicológica y lo más importante, de sus implicaciones para la enseñanza de las matemáticas. El enfoque histórico-cultural ha servido durante muchos años de referente teórico en las investigaciones educativas en Cuba, influidas por la formación de profesionales cubanos de alto nivel en la desaparecida Unión Soviética y enriquecidas por ese laboratorio permanente que es la práctica educacional cubana. Este trabajo tiene como objetivo divulgar entre los profesores e investigadores de la comunidad de educadores matemáticos latinoamericanos, los principales presupuestos teóricos de esta escuela psicológica, significándolos en el contexto de la enseñanza y aprendizaje de las matemáticas, aunque con énfasis especial en el nivel superior, a tono con el nivel de enseñanza donde el autor desarrolla sus investigaciones.
Resumo:
A lo largo de la licenciatura de Matemáticas (que terminamos el curso pasado), el rigor ha sido la característica predominante: siempre se ha demostrado todo lo afirmado o utilizado. Este hecho hizo que no concibiéramos unas matemáticas sin demostraciones. Con este enfoque de las matemáticas iniciamos nuestro periodo de prácticas (correspondientes a la asignatura "Prácticas de la Enseñanza" de quinto curso) y nos enfrentamos por primera vez con la realidad educativa: no todo lo que se le explica a los alumnos debe ser objeto de demostración. Mediante esta comunicación pretendemos compartir nuestras reflexiones sobre el valor de la demostración en las matemáticas de la Enseñanza Secundaria.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
El proceso de indagación que se describe en este artículo se llevó a cabo con el fin de obtener información que nos ayudara en nuestro quehacer pedagógico. Exploramos la opinión de los alumnos sobre los aportes que el estudio de las matemáticas les ha brindado en su formación, y comparamos los resultados obtenidos en los distintos grados en los que se hizo la exploración. El artículo presenta una descripción del contexto en el que ocurrió la experiencia, incluye la justificación que nos condujo a la definición concreta del problema y del objetivo, expone la forma como se recolectó y organizó la información, y finaliza con algunas impresiones y reflexiones sobre los resultados obtenidos.
Resumo:
Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).
Resumo:
Las observaciones en el aula de clase y el trabajo con los estudiantes del grado décimo de la Institución Educativa Normal Superior de Medellín mostraron que existían dificultades en el nivel de los procesos de pensamiento que se utilizaban al resolver los problemas matemáticos o querer aprender un concepto, estas dificultades consistían en la no aplicación del proceso necesario para resolver la tarea planteada fuera ésta el comprender, el realizar, explicar o verificar. Estas observaciones mostraron además que los procesos que manejaban los estudiantes no estaban acordes con los niveles que las teorías cognitivas plantean para su edad, el pensamiento formal propio de esta época aun no emergía y cada problema en el aula era resuelto solamente desde el punto de vista concreto. Teniendo en cuenta esto se concluyó que era necesario mejorar el proceso de razonamiento matemático, es decir llevar al estudiante a que aplique los procesos mentales necesarios para llegar al aprendizaje del concepto, la resolución de problemas y siga avanzando hasta llegar a la argumentación, pero en medio del trabajo cotidiano en el aula, esto es elevar los niveles de razonamiento de los estudiantes y con ello equilibrar el desarrollo de su pensamiento a su edad.
Resumo:
Este trabajo realiza, en primer lugar, un estudio de manuales de primero y segundo de Bachillerato-LOGSE, respecto al concepto de integral definida, exponiendo las cuatro dimensiones que se han considerado y un ejemplo de aplicación a un manual de 2º de Bachillerato. En la segunda parte, se hace un estudio comparativo entre los nueve manuales realizados, más representativos de Jaén y provincia, centrándonos en los significados institucionales históricos y en los conflictos semióticos.
Resumo:
Durante los cursos 1992 a 1998 hemos trabajado en un proyecto de investigación dirigido al estudio de las concepciones iniciales que tienen los alumnos sobre la asociación estadística y su evolución después de diversos experimentos de enseñanza usando ordenadores. En este trabajo, describimos brevemente los resultados de este proyecto, y los utilizamos como base para la reflexión sobre el papel del ordenador como recurso didáctico y como instrumento en la resolución de problemas, extendiendo las conclusiones presentadas en Batanero y cols. (1998).
Resumo:
En este trabajo presentamos el método con el que describimos el conocimiento que estudiantes españoles de la diplomatura de magisterio, futuros profesores de primaria, manifestaron en el estudio TEDS-M sobre Didáctica de la Matemática. Ejemplificamos dicho método mediante el análisis de una pregunta del subdominio de números relativa a la dificultad en la resolución de problemas aritméticos para alumnos de primaria.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.