72 resultados para Educación continua
Resumo:
El proceso de aprendizaje y enseñanza de la Matemática presenta tradicionalmente una serie de dificultades. Su objeto de estudio, que es pura abstracción creada por el ser humano, así como la existencia de diferentes estilos y ritmos de aprendizaje en los estudiantes, son algunos de los factores que influyen en las dificultades mencionadas. La clase planificada y dirigida a la media del curso provoca frustraciones en los que tienen menos aptitud hacia la Matemática y aburrimiento en los más aventajados. Con el objetivo de que los estudiantes de último año pudieran aprovechar más efectivamente la diversidad curricular, se diseñaron tres grupos diferenciados de Matemática, con un mismo programa, pero ofreciendo la oportunidad de experimentar con un grupo afín en intereses y habilidades, y con una metodología adecuada a los ritmos y estilos de aprendizajes de cada individuo. En este trabajo presentamos la experiencia de estudiantes, profesores, psicólogos y directivos en un esfuerzo común por lograr el desarrollo humano integral.
Resumo:
La Educación Matemática en Venezuela se encuentra en pleno proceso de desarrollo y de consolidación como disciplina científica. Uno los indicadores que más han contribuido con este logro lo constituyen los eventos relacionados con esta disciplina; entre ellos se hace especial énfasis la XXI Reunión Latinoamericana de Matemática Educativa que se realizó del 22 al 26 de julio del 2007 en la Facultad de Humanidades de la Universidad del Zulia, por ser el principal motivo y estímulo que nos llevó a la elaboración de este trabajo, que consistió en la presentación de una conferencia especial en el marco de la Reunión sobre “¿Qué se investiga en Educación Matemática?: Desde la perspectiva de un investigador en desarrollo”. La presentación se hizo tratando de darle respuesta a las interrogantes siguientes: ¿Qué se ha investigado en Educación Matemática?, ¿Qué se está investigando actualmente en Educación Matemática? y ¿Qué se podría seguir investigando en Educación Matemática en el futuro?
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles
Resumo:
En este documento recojo diferentes acercamientos al establecimiento de las competencias que deberían desarrollar los profesores de matemáticas de Educación Primaria. Para ello, en primer lugar analizo el papel de la noción de competencia en el marco de la formación de profesores. A continuación me centro en las directrices europeas que se han empleado para el diseño de las nuevas titulaciones dirigidas a la formación de maestros, prestando especial atención al caso español. Finalmente, analizo diferentes trabajos en investigaciones centradas en el área de matemáticas.
Resumo:
Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.
Resumo:
La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.
Resumo:
La sociedad plantea una variedad de demandas de educación dependiendo de su situación y circunstancias particulares. La educación a distancia representa una realidad mundial en constante crecimiento cuantitativo y cualitativo potenciada últimamente con nuevos medios de comunicación.
Resumo:
Este trabajo se estructura en torno a la evolución (no histórica)del problema de la Educación Matemática. Una vez constatado el fracaso de la respuesta pedagógica a dicho problema, surge la Didáctica de las Matemáticas que lo aborda tomando en consideración, de manera integrada, "lo matemático" y "lo pedagógico", lo que provoca una doble ruptura: con la Pedagogía y con los modelos epistemológicos ingenuos, transparentes e incuestionables del conociminento matemático. En la segunda parte del trabajo se esquematizan muy brevemente las respuestas que proporcionan a dicho problema los dos principales Programas de Investigación en Didáctica de las Matemáticas: el Programa Cognitivo y el Programa Epistemológico.
Resumo:
Este módulo tiene como propósito profundizar en el currículo de matemáticas de la educación básica secundaria y media en Colombia. Con este objetivo describimos en primer lugar algunos elementos destacados de la teoría curricular, como la noción de currículo y el estudio de sus componentes, las herramientas elegidas para realizar dicho estudio. A continuación, centrándonos más específicamente en la problemática de la planificación, se propone una reflexión sobre los diferentes procesos de planificación en los que intervienen los profesores en formación, con mayor o menor responsabilidad, como parte de su actividad profesional y sobre la caracterización del contexto social, institucional y de aula en el que desarrollan dicha actividad. Este módulo contempla también una primera recogida de información y la toma de decisiones sobre el contenido matemático que los estudiantes trabajarán a lo largo del programa para desarrollar un ciclo del análisis didáctico.
Resumo:
En este capítulo,describimos nuestras actuaciones para el diseño e implementación de la unidad didáctica relacionada con el cálculo de áreas de polígonos por el método de descomposición y recomposición. Inicialmente, efectuamos la formulación del problema, al enfocarlo desde la normativa curricular colombiana, y describimos el proceso de selección del tema y los contextos social, institucional y académico del colegio donde se implementó. Después, explicamos el proceso del diseño basado en el análisis didáctico realizado sobre el tema. Seguidamente, describimos los instrumentos y procedimientos de recolección y análisis de la información. Posteriormente, describimos el diseño que se implementó, detallamos la evaluación realizada al diseño y a la implementación, y mostramos una propuesta de mejora para una futura aplicación. Por último, presentamos conclusiones de aspectos relevantes en el diseño e implementación de la unidad didáctica y listamos las referencias y anexos.
Resumo:
En este capítulo, presentamos el proceso de diseño e implementación de la unidad didáctica del cuadrado de un binomio para grado octavo. Iniciamos con la descripción de los análisis previos (análisis de contenido, análisis cognitivo y análisis de instrucción) a la implementación que permitieron producir el primer diseño de la unidad didáctica del tema. Seguidamente, detallamos el trabajo realizado en el análisis de actuación, con el cual empezamos a analizar y a revaluar aspectos del diseño implementado de acuerdo con los resultados obtenidos por los estudiantes. Justi camos el nuevo diseño de la unidad didáctica con base en los resultados de esos análisis. Por último, concluimos con algunas re exiones sobre la experiencia vivida a lo largo del proceso.
Resumo:
En el siguiente informe,presentamos el trabajo que desarrollamos como estudiantes del programa de Maestría en Educación Matemática de la Universidad de los Andes en el periodo 2012-2014. Presentamos la plani cación e implementación de una unidad didáctica en cuatro fases: el diseño previo, la implementación, la evaluación y la propuesta nal. El tema matemático que abordamos en la unidad didáctica es el de áreas de regiones sombreadas entre polígonos y porciones circulares. Este tema está ubicado dentro de la geometría métrica plana. Con la elaboración de la unidad didáctica,pretendemos contribuir a mitigar los inconvenientes que los estudiantes pueden presentar en el aprendizaje del tema y que los docentes pueden tener al orientarlo.
Resumo:
Este informe contiene cuatro partes: (a) diseño previo, (b) instrumentos y procedimientos de recolección y análisis de la información, (c) descripción de la implementación y (d) nuevo diseño. En el diseño previo, nos centramos en la delimitación del tema matemático, la formulación de los objetivos y las tareas para lograr el aprendizaje. Con los instrumentos y procedimientos de recolección y análisis de la información, evaluamos la actuación de los estudiantes, el diseño y la implementación. En la descripción de la implementación, mostramos los cambios que realizamos al diseño previo durante la implementación con su respectiva justi cación. Por último, en el nuevo diseño explicamos las mejoras que realizamos a las tareas con motivo del análisis de sus debilidades, amenazas, fortalezas y oportunidades.
Resumo:
Este capítulo presenta el trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes de un grupo de cuatro profesores de matemáticas. El informe describe las actuaciones para el diseño, implementación y evaluación de la unidad didáctica relacionada con permutaciones sin repetición. Este diseño se fundamenta en el modelo de análisis didáctico que constituyó el contenido central de la maestría.