53 resultados para resolución (Consejo de Europa)
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
El propósito de esta comunicación es el de analizar los lineamientos contenidos en los programas de estudio de matemática del tercer ciclo y de la educación diversificada del Ministerio de Educación Pública de Costa Rica, relacionados con la resolución de problemas.
Resumo:
La presente investigación, de orden cualitativo y en curso, es parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura del “Isomorfismo de Medidas” propuesta por Vergnaud (1995). La propuesta teórica se basa en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico; en la segunda fase se diseñara y aplicará el modelo de enseñanza centrando el interés en la resolución de problemas con isomorfismo de medidas. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vi
Resumo:
La presente investigación, de orden cualitativo y en curso, forma parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura propuesta por Vergnaud (1995) en el “Isomorfismo de Medidas”. La propuesta teórica es basada en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, de dos, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vida cotidiana planteados en el aula.
Resumo:
El propósito de este curso es el de compartir algunas reflexiones relacionadas con la estrategia metodológica de resolución de problemas matemáticos, revisar las ideas de Polya (1990), Schoenfeld (1985), del informe PISA, de la NCTM y especialmente el enfoque “Open Ended” (Becker y Shimada, 2005) utilizado por los japoneses en el aula. También se describen aspectos históricos de la utilización de tecnologías digitales en el proceso de resolución de problemas, principalmente las estrategias utilizadas por investigadores en inteligencia artificial.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.
Resumo:
Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
Los usos que la sociedad hace de los números deben merecer nuestra atención. A través de la mirada matemática podemos contribuir al desarrollo de la actitud crítica y reflexiva ante las informaciones, de todo tipo, que nos rodean. En este sentido, en el presente Clip, quisiera compartir con los lectores de SUMA tres ejemplos muy recientes.
Resumo:
Este artículo recoge el contenido de la intervención de su autor el 11 de abril de 2002 ante la ponencia sobre «La situación comparativa de las enseñanzas científicas con los países Europeos en la Educación Secundaria» creada en la primavera de 2001 en la Comisión de Educación, Cultura y Deporte del Senado español.
Resumo:
Se escribe dos tareas matemáticas enriquecedoras, adecuadas para los últimos cursos de primaria y primero de secundaria, dándose cinco características que deben tener las tareas "fértiles" de planteamiento y resolución de problemas.
Resumo:
Hace algunos meses, los directores de SUMA me encargaron coordinar un trabajo monográfico que recogíera la situación, más o menos actual, de la enseñanza de las matemáticas en Europa, para la escolarización obligatoria y postoblígatoria, en sus diversas opciones, anterior a la universidad.
Resumo:
El libro que comentamos es de apariencia sencilla, sin visos de trascendencia. Y no sólo porque no es muy extenso (215 páginas), sino por su tono coloquial, cercano y directo, y porque en ningún momento hace referencia a ningún resultado matemático que no sea conocido por cualquier profesor de matemáticas de los niveles primario y medio.