65 resultados para Ecuaciones integrales


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente artículo se considera el tema de la proporcionalidad en distintos niveles y dentro de ámbitos diferentes. En primer lugar, se trata la proporción en el campo de las ecuaciones mediante unos ejemplos extraídos de la historia de las matemáticas. En segundo lugar, se presentan ejemplos relativos a las proporciones en temas de geometría plana y medida de ángulos dentro de un contexto astronómico. En dicho marco, se elabora una maqueta del sistema solar y, posteriormente, se estudian los movimientos de la Tierra para determinar su periodo de rotación y calcular, según la precesión terrestre, estrellas candidatas a ser "la polar del futuro", esto es, la estrella más próxima al polo norte celeste. En general, el artículo muestra diversas actividades que cabe desarrollar dentro del aula, en un ambiente de taller, con miras a potenciar la interdisciplinariedad y el contacto de las matemáticas con el mundo real.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta una propuesta desarrollada en el Departamento del Magdalena, Distrito Cultural e Histórico de Santa Marta. A finales del año 2002 se hizo un análisis de los bajos resultados presentados por los estudiantes de grado Once en las diferentes pruebas aplicadas por el ICFES, específicamente en el área de Matemática durante los años 2001 y 2002. A partir de estos resultados se organizó un equipo de trabajo donde se asumió que la evaluación es un proceso continuo e integral en la enseñanza de la matemática que no solo basta dar información a diario, sino conocer realmente si los estudiantes están aprendiendo, si verdaderamente los alumnos son competentes a la hora de evaluarlos y además si se cumplen los estándares mínimos exigidos por MEN. Para lograr tal fin se diseño un plan estratégico a mediano plazo que ayuda a fortalecer los niveles de desempeño en el desarrollo de sus competencias tanto integrales ((interpretativa, argumentativa, propositiva) como básicas (la comunicación, el razonamiento y la solución de problemas), obteniéndose a partir del año 2006 resultados satisfactorios en el área.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se indican las tareas que debe realizar un usuario competente en el manejo del Método Cartesiano para poner un problema verbal en ecuaciones. Mediante el uso de una colección de 13 problemas de distintas subfamilias propuestos a 258 estudiantes de bachillerato, 15-18 años, se indaga la manera en que los estudiantes usan el Método cartesiano cuando producen igualdades correctas. Se concluye que los estudiantes producen una diversidad de igualdades correctas en las que manifiestan algunas preferencias y tendencias, encontrándose un invariante de conducta: todas las expresiones algebraicas que contienen las igualdades correctas provienen de una lectura algebraica del problema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Análisis de los problemas de la XX Olimpiada Nacional Matemática. Propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Comentarios sobre problemas anteriores. Comentarios de nuestros lectores. Los Torneos de Problemas. Nueva propuesta de problemas de cálculo aritmético para resolver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El artículo consta de tres partes: en la primera exponemos los problemas planteados en la Primera Fase del Torneo de Matemáticas para 2º de la ESO y resolvemos alguno de ellos; en la segunda parte enunciamos los ejercicios propuestos en el Torneo de Primaria; y por último planteamos varios problemas de diferentes fuentes, uno de la colección de "Problemas de los abuelos". Solucionamos el que nos ha llegado como propuesto en una oposición para ser resuelto sin aplicar un método algebraico, resolución que debía ser entendible por alumnos de niveles elementales. Para las soluciones hemos aplicado ecuaciones, gráficos del parte-todo o tablas de doble entrada, como ya es habitual, orientando al provecho que se puede obtener en el aula con las diversas metodologías.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nossa pesquisa sobre as diferentes possibilidades de tratamento da noção de sistemas de equações lineares na transição entre o Ensino Médio e Superior. O referencial teórico escolhido é a noção de níveis de conhecimento esperados dos estudantes conforme definição de Robert (1997) apoiado das abordagens teóricas em termos de quadro de Douady (1984), de pontos de vista de Rogalski (1995) e complementado pela teoria antropológica do didático de Bosch e Chevallard (1999), que permite analisar as diferentes relações institucionais esperadas existentes assim como as relações pessoais desenvolvidas pelos estudantes em função das anteriores. Observamos que apesar da coerência entre as relações institucionais esperadas e existentes, os resultados obtidos pelos estudantes nas macroavaliações, tanto no Ensino Médio como no Ensino Superior, não correspondem às expectativas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta investigación desarrollada desde la perspectiva teórica de la aproximación socioepistemológica, se presenta, la producción y puesta en escena de una secuencia basada en la ingeniería didáctica. De manera específica, este trabajo indaga sobre qué alternativas pueden ser factibles para la construcción escolar del significado de los números complejos, bajo la hipótesis de que su significado puede ser construido a través del proceso de convención matemática. El análisis de la producción de los estudiantes, al trabajar una secuencia de actividades diseñada por nosotros en base a la hipótesis anterior, da evidencia de que a pesar que los estudiantes insistían en que “las raíces cuadradas de números negativos no existen”, nuestra secuencia los indujo a operar con ellos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.