75 resultados para Análisis matemático-Problemas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este documento, describo algunos aspectos del significado con el que usamos la expresión "análisis didáctico" en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en la formación inicial de profesores de matemáticas de secundaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las observaciones en el aula de clase y el trabajo con los estudiantes del grado décimo de la Institución Educativa Normal Superior de Medellín mostraron que existían dificultades en el nivel de los procesos de pensamiento que se utilizaban al resolver los problemas matemáticos o querer aprender un concepto, estas dificultades consistían en la no aplicación del proceso necesario para resolver la tarea planteada fuera ésta el comprender, el realizar, explicar o verificar. Estas observaciones mostraron además que los procesos que manejaban los estudiantes no estaban acordes con los niveles que las teorías cognitivas plantean para su edad, el pensamiento formal propio de esta época aun no emergía y cada problema en el aula era resuelto solamente desde el punto de vista concreto. Teniendo en cuenta esto se concluyó que era necesario mejorar el proceso de razonamiento matemático, es decir llevar al estudiante a que aplique los procesos mentales necesarios para llegar al aprendizaje del concepto, la resolución de problemas y siga avanzando hasta llegar a la argumentación, pero en medio del trabajo cotidiano en el aula, esto es elevar los niveles de razonamiento de los estudiantes y con ello equilibrar el desarrollo de su pensamiento a su edad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este documento, describo algunos aspectos del significado con el que usamos la expresión “análisis didáctico” en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en el diseño de planes de formación inicial de profesores de matemáticas de secundaria, en la identificación de las capacidades que califican la competencia de planificación del futuro profesor de matemáticas y en la caracterización de su conocimiento teórico, técnico y práctico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo se expone una visión actualizada del Análisis Didáctico como instrumento metodológico específico para la investigación en Educación Matemática. La potencialidad práctica del método se ilustra con la descripción de su aplicación en un estudio desarrollado recientemente sobre la comprensión del conocimiento matemático (Gallardo, 2004). En base a esta experiencia se destacan además las principales limitaciones e interrogantes metodológicos generados por el Análisis Didáctico junto con algunas posibilidades de mejora futura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artículo presenta los resultados de un estudio sobre las tradiciones de enseñanza en cuatro países europeos: Bélgica (Flandes), Inglaterra, Hungría y España. Se trata de un estudio a pequeña escala en el que se emplean métodos cuantitativos y cualitativos, y que, en lugar de pretender obtener generalizaciones, está orientado a arrojar alguna luz que posibilite la mejora de la enseñanza y el aprendizaje de las matemáticas. Establece comparaciones con los resultados de los test TIMSS y PISA y extrae alguna conclusión para la formación inicial de maestros y profesores de matemáticas. Extraemos de éste los resultados relativos a los datos cuantitativos y nos centramos en el foco matemático.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante los cursos 1992 a 1998 hemos trabajado en un proyecto de investigación dirigido al estudio de las concepciones iniciales que tienen los alumnos sobre la asociación estadística y su evolución después de diversos experimentos de enseñanza usando ordenadores. En este trabajo, describimos brevemente los resultados de este proyecto, y los utilizamos como base para la reflexión sobre el papel del ordenador como recurso didáctico y como instrumento en la resolución de problemas, extendiendo las conclusiones presentadas en Batanero y cols. (1998).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El trabajo tiene como objetivo mostrar la forma y los resultados de aplicar tres estrategias cognitivas en la enseñanza de conceptos matemáticos y cómo estas posibilidades de enseñanza mejoran los niveles de razonamiento matemático y por ende las posibilidades de racionalizar problemas de las matemáticas, de otras ciencias y de la vida cotidiana. Presenta el marco teórico teniendo como base para este el cognitivismo como base del desarrollo del pensamiento y los enfoques cubano de la elaboración de conceptos, la enseñanza para la comprensión y la pedagogía conceptual. El razonamiento se ha definido como el desarrollo de los procesos de pensamiento aplicados a problemas matemáticos y los conceptos como construcciones abstractas de los sujetos. Se muestran las tres intervenciones realizadas en la Institución Educativa Normal Superior de Medellín de manera general, en uno de los dos conceptos trabajados. Los resultados permiten determinar que el mejoramiento del razonamiento matemático puede ser mejorado si las formas de trabajo en el aula están acordes con la manera como se define la forma en que los estudiantes aprenden. La ponencia es un acercamiento a un tema de interés para la investigación, el mejoramiento de la calidad en el pensar de nuestros estudiantes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas de representación y la resolución de problemas matemáticos es un tema de interés para la Didáctica de la Matemática porque se pone en juego una serie de conocimientos, conceptos, modelos, métodos, estrategias, experiencias y relaciones que implican un pensamiento elaborado complejo que consigue que, a partir de unos datos conocidos, encontrar otros datos desconocidos. En este estudio, describimos la actuación de resolutores cuando resuelven un problema matemático, de manera espontánea con lápiz y papel. Cuando algún estudiante resuelve un problema mediante lápiz y papel deja la huella de los pasos seguidos en su resolución. Esos pasos están cargados de información importante que el resolutor presenta haciendo uso de algún sistema de representación que le es conocido y le permite comunicar su pensamiento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.