31 resultados para El mapa del imperio : Del escritorio de Manuel Puig al campo intelectual
Resumo:
Este trabajo centra su atención en la construcción de saberes matemáticos en un ambiente de colaboración, en el que se privilegia la interacción entre los participantes, la confrontación y la negociación. Se hace una descripción de la problemática que se vive en el aprendizaje de las matemáticas y de la necesidad de innovar a través de situaciones donde el contenido matemático es relevante para el alumno y la sociedad. De igual modo se hace una descripción sucinta acerca de que esta manera de construir saberes incluye el desarrollo de competencias matemáticas, las consideradas en el plan de estudio de educación secundaria 2006. Esta descripción contiene actividades para un taller considerando el eje sobre el manejo de la información y una versión de principios para orientar su ejecución.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Este escrito resume las actividades desarrolladas durante el curso “La conservación en el estudio del área”, en el que mostramos la existencia de una particular relación entre el área y su medición; de la medición con la comparación, y de todas estas con la conservación. Las actividades comprendieron construcciones vinculadas con regiones planas (presentadas como regiones geométricas o analíticas), involucrando a la conservación –como principio, noción, concepto, actividad y/o práctica– en el estudio del área, y de su relación con la integral definida. Actividades que ubicamos en la aproximación socioepistemológica a la investigación en Matemática Educativa.
Resumo:
Los 5 poliedros regulares han sido modelo de la ciencia para los griegos y modelo de la astronomía para Kepler. Sin embargo, a pesar de su gran valor epistemológico su estudio es normalmente muy superficial en los cursos de Secundaria. Hace 20 años me formulé esta sencilla pregunta: ¿Cómo podemos calcular el volumen del icosaedro y del dodecaedro regular, conociendo solamente la medida de la arista? Esta pregunta dio lugar a una fascinante investigación, que comenzó en la búsqueda de diferentes medios para construir poliedros (se puede ver en la foto de la derecha un modelo a usar durante el taller) , un trabajo muy interesante con el álgebra de los irracionales cuadráticos, el uso de la trigonometría y el descubrimiento de varias y sorpresivas propiedades geométricas relacionadas algunas con el número áureo. Durante el curso los participantes aprenderán a construir, con regla y compás el pentágono regular(comenzando con su lado) , de la forma más simple y exacta, con su justificación paso a paso. Esto es imprescindible ya que en ambos el icosa y el dode hay numerosos pentágonos regulares. Este curso o taller es tan sólo un pequeño paseo en el increíble mundo de los 5 poliedros regulares, un mundo lleno de tesoros matemáticos, un mundo que espera a ser explorado y descubierto.
Resumo:
El objetivo de esta investigación es identificar las relaciones entre el conocimiento de geometría usado durante la resolución de problemas de probar y el truncamiento del razonamiento configural. Los resultados muestran diferentes trayectorias de resolución vinculadas a las sub-configuraciones relevantes. Estos resultados parecen indicar que el truncamiento del razonamiento configural está relacionado con la capacidad de los estudiantes de establecer relaciones significativas entre lo que conocen de la configuración y la tesis que hay que probar a través de algún conocimiento geométrico previamente conocido.
Resumo:
Nuestras investigaciones dan cabida, con los mismos métodos, a diferentes nociones del límite, como límite finito de una sucesión o límite finito de una función en un punto. Consideramos tres elementos relacionados: fenomenología, sistemas de representación y pensamiento matemático avanzado. En la primera parte lo explicamos y presentamos ideas de otros marcos teóricos. Hemos usado las mismas herramientas metodológicas para descubrir y estudiar los fenómenos organizados por tres casos de límite finito y para reconocer esos fenómenos en libros de texto. Además, hemos desarrollado instrumentos para mostrar los fenómenos que emplean alumnos y profesores. En la segunda parte describimos los métodos usados para extraer información de libros de texto y alumnos.
Resumo:
El INEE es el organismo del Ministerio de Educación, Cultura y Deporte encargado de la evaluación del sistema educativo español. Entre los estudios que coordina se encuentra TEDS-M, el primer estudio comparativo a nivel internacional a gran escala sobre educación superior. Su objetivo ha sido evaluar la formación inicial del profesorado de Matemáticas en educación primaria y secundaria obligatoria. Analiza las políticas educativas y el currículo de formación del profesorado de matemáticas, además del conocimiento en matemáticas y didáctica de las matemáticas de los futuros maestros. Participaron 17 países, entre ellos España, que evaluó a más de mil estudiantes de último curso de magisterio en educación primaria, de 48 instituciones. El presente artículo resume las principales características y conclusiones del estudio cuyo informe de resultados se publicó en 2012, seguido de un segundo volumen con análisis secundarios en 2013.
Resumo:
En este artículo se describe el desarrollo de un curso que trata de los conceptos de área, medida y conservación de área, el cual estuvo dirigido a profesores de matemáticas de nivel medio y superior. El trabajo se llevó a cabo en tres fases. En la primera se analizaron los conceptos de área, conservación y medida (de área). En la segunda se mostraron los resultados de algunas investigaciones asociadas con el tema de conservación y medida de área, entre los que destacan los estudios de Piaget y sus colaboradores, así como Kordaki y Potari. En la tercera se realizaron actividades que involucró el trabajo con estos conceptos en figuras geométricas planas y expresiones analíticas. En ese tenor, es que en este escrito se analizan estos conceptos, los resultados de investigaciones que se presentaron y analizaron en el curso, y las actividades realizadas.
Resumo:
El trabajo se inscribe en el marco del proyecto de articulación e integración de la formación docente, entre la Universidad Nacional de Tucumán y Ministerio de Educación y Cultura de la Provincia de Tucumán, denominado: “Mejoramiento del Proceso de Desarrollo del Eje de la Práctica Profesional en Educación Científica, en las Carreras de Profesorado de Educación Primaria y Profesorado de Matemática y su Impacto en las Escuelas Seleccionadas de los distintos niveles”. Fue destinado a docentes del nivel primario y medio que reciben residentes, residentes y profesores en matemática de los institutos superior de formación docente (ISFD).Se desarrollaron distintas acciones entre las que se encuentran: Jornadas de profundización disciplinar y didáctica, seminarios taller, talleres institucionales e interinstitucionales de intercambio entre la universidad y los ISFD e implementación de un foro de relatos de experiencias. Se evaluaron avances y obstáculos encontrados en la ejecución y de cómo el proyecto favoreció la articulación interinstitucional.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
Nos preguntábamos en algún momento del artículo anterior de esta serie si realmente el teorema de Pappus generaliza el de Pitágoras.
Resumo:
Nos son tan habituales algunas cosas que no nos sorprendemos ante ellas ni nos paramos a pensar acerca de su significado profundo o sobre la maravilla de su gestación, perdida a veces en la noche de los tiempos. Considerado en abstracto, como una relación entre superficies de figuras descontextualizadas, ¡no es nada evidente el teorema de Pitágoras!, pero hay muchos problemas de tipo práctico que obligan a pasar obligatoriamente por el ángulo recto. ¿Cómo construir si no, por ejemplo, un edificio de una mínima prestancia? Las divulgaciones al uso han justificado siempre su origen en la necesidad de medir terrenos después de las crecidas de los grandes ríos en cuyas orillas se asentaron las primeras civilizaciones sedentarias. Se supone también que habría que definir retículas ortogonales y que ello llevaría a catalogar ternas de números que permitieran construir ángulos rectos. Cuando se contempla desde un montículo la hermosa anarquía distributiva que el devenir de los tiempos ha producido en nuestros campos, parece claro que ese afán regulador sólo puede darse bajo un fuerte poder centralizado. Así pues, quizás haya que incluir el teorema Kou-Ku —junto, por ejemplo, el monoteísmo y los primeros códigos legislativos— entre las primeras consecuencias de la aparición del Estado (con mayúsculas, claro).
Resumo:
La nueva dirección de SUMA nos pregunta qué línea va a seguir “Desde la Historia”. Las líneas se hacen andando, que diría Machado, y esta respuesta es no sólo cierta en general sino obligada en nuestro caso para esta sección de la revista. No somos especialistas en historia de las matemáticas, sólo simples aficionados, y ello nos impide concretar mucho los contenidos. Sí somos especialistas otra cosa es que seamos buenos especialistas en animar tertulias sobre matemáticas para adolescentes y ello será, junto con lo que leamos y especulemos, la fuente de nuestra aportación a “Desde la Historia”. Desde nuestro profundo convencimiento de que el quehacer didáctico es un arte más que una ciencia –y aquí nos resulta obligado el recuerdo de Paco Hernán-, y por tanto improgramable, nos dejaremos llevar también aquí de la intuición de cada momento: fiaremos a la motivación contenidos y digresiones, apasionamientos, descaros y concurrencias. Lo que escribamos estará seguramente muy relacionado con las conexiones que nuestras clases nos motiven, de manera que lo más probable es que haya en los artículos una fuerte interdisciplinariedad, una mezcla de intereses personales sobre historia y de reflexiones sobre didáctica. En cualquier caso intentaremos responder a la renovada confianza que SUMA nos ha mostrado y que sinceramente agradecemos. Por supuesto, nuestra dirección de correo está disponible para cualquier sugerencia, aportación o crítica que los lectores y lectoras de SUMA queráis hacer.
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
El propósito de este artículo es presentar una propuesta didáctica de la integral definida para la educación secundaria obligatoria y bachillerato a través de unas secuencias de aprendizaje que ayuden al estudiante a captar las ideas fundamentales del cálculo integral, del concepto de integral y del proceso de integración.