19 resultados para Platón ante el problema del error. La formulación del Teeteto y la solución del Sofista
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.
Resumo:
En este trabajo se parte de la perspectiva constructivista de la enseñanza y aprendizaje de las matemáticas y se considera la resolución de problemas como una actividad interesante y formativa. Se presenta el problema del tablero de ajedrez y distintos itinerarios para su trabajo, siguiendo las fases de Polya (1982) para la resolución de problemas. Finalmente se presentan algunas reflexiones sobre la resolución del problema, sobre el análisis de esta resolución y sobre la utilidad y conveniencia de este tipo de análisis para el proceso de enseñanza y aprendizaje de las matemáticas.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
Con el objeto no de introducir al estudiante universitario a la noción de función inversa sino de reorganizar ideas, darle significado a unas y resignificar otras (es decir, ayudarlo a aprehender el concepto) se elaboró un razonamiento, basado en ideas previas del alumno, que concluye en el Teorema del tubo fluorescente. Este Teorema permite, a partir del gráfico de una función biyectiva, obtener el de su inversa de un modo más sencillo y seguro que el de los textos tradicionales y, simultáneamente, aporta un claro mensaje conceptual. El cambio en la percepción del tema (en el 75 a 80% de los estudiantes) y la seducción de la inversa “instantánea” son superados por la idea (desde ahora evidente) que una función y su inversa son expresiones de una misma relación observada desde distintos puntos de vista.
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este momento la educación matemática en el país se encuentra cruzando por un período crítico caracterizado por transformaciones fruto de la implementación de las políticas del Ministerio de Educación Nacional. Una de ellas, relacionada con los estándares básicos de matemáticas, son punto neurálgico para el sistema educativo en general. Su implementación en las instituciones educativas del país deberá generar espacios de reflexión, debate, análisis, confrontación, etc., a partir de los cuales se introduzcan formas nuevas de comprender, implementar, evaluar y transformar el currículo de matemáticas de nuestro país.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
Pensar en una evaluación en competencias nos remite a pensar, en el sentido de la evaluación, del termino competencia, pero sobre todo a las practicas pedagógicas sobre componentes curriculares y su sentido en la formación de los niños y jóvenes de nuestro país. Una evaluación en competencias, es una evaluación que centra la atención en el saber hacer y en el hacer sabiendo, que debe permitir reconocer las diferencias y las potencialidades de nuestros jóvenes, de esta manera el reto pedagógico de todo maestro radica en el tipo de problema o de actividad que le propone al estudiante para activar sus competencias o favorecer su desarrollo. Los desempeños son expresiones de esas competencias y aunque no son exclusivos de una determinada área si están asociados a campos del saber específicos, dadas las particularidades de las disciplinas de conocimiento. Es en este sentido que nos proponemos discutir sobre algunas competencias y desempeños asociados al saber algebraico.
Resumo:
En este trabajo, presentamos los resultados de investigación de una tesis de maestría realizada en México. Nuestro objetivo fue indagar cómo los estudiantes del Nivel Medio Superior, analizan secuencias de crecimiento visual, con base en representaciones gráficas, así como la forma en que expresan algebraicamente el patrón que subyace a una secuencia; teniendo como supuesto que el análisis visual organizado de las secuencias puede contribuir a la detección, formulación y generalización de patrones. Con base en nuestros resultados, afirmamos que la visualización juega diferentes papeles dentro del proceso de generalización, los cuales identificamos y clasificamos a la luz de la Teoría de la Objetivación y la Teoría de la Representaciones Semióticas. Proponemos una herramienta para discutir el papel y funcionamiento de la visualización en la generalización de patrones.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.