38 resultados para Evolución histórica del concepto
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
La principal intención de este trabajo es motivar a los docentes e investigadores en educación matemática a integrar en los procesos de enseñanza y aprendizaje de las matemáticas relacionados con el concepto de función, el desarrollo histórico de dicho objeto de estudio. Como segundo objetivo se desea sugerir diferentes actividades que se pueden utilizar para estudiar el concepto de función en los varios niveles de la educación formal. Este artículo se divide en tres secciones. La primera sección es una revisión del desarrollo del concepto de función a través de la historia. La segunda sección es un breve estudio de los tipos de definición existentes y las diferentes formas de representar funciones. La tercera sección es un recuento de actividades o situaciones de interés, con la intención de indicar facetas interesantes a la hora de estudiar el concepto de función.
Resumo:
El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.
Resumo:
Se muestran los resultados de una encuesta sobre las opiniones del profesorado de Matemáticas de secundaria en Galicia, relativa a la instrucción sobre el concepto de "Límite funcional" En esta comunicación se presentan sólo tres aspectos relacionados con el tema de una investigación más amplia: El profesorado opina sobre el nivel adecuado en que considera se debería impartir la noción de límite de funciones en los itinerarios del Bachillerato o en la ESO; se identifican algunos referentes que utiliza en su introducción, y finalmente, se recuentan instrumentos, técnicas y herramientas que el profesorado utiliza habitualmente en la instrucción de este objeto matemático. Transversalmente se trata de ver en qué grado el contexto general del aula condiciona las estrategias, herramientas y procedimientos.
Resumo:
Presentó en este encuentro algunos resultados de la investigación “La objetivación del concepto de parábola desde el uso de artefactos”. Estos resultados nos muestran cómo los artefactos son constituyentes en el proceso de objetivación del concepto de parábola. Para ello, explicitamos, en una primera parte, la importancia que desde la Teoría de la Actividad se le ha dado al carácter mediatizado del pensamiento; seguidamente mostramos, a partir de los diferentes episodios, cómo los artefactos culturales, en el sentido de Radford (2008) se convierten en constituyentes en el proceso de objetivación del concepto de parábola. Así, consideramos que la manera como un sujeto llega a pensar y a conocer un objeto depende de los significados culturales producidos, de las interpretaciones propias, de las formas de acercase al objeto, por medio de la actividad misma y siempre mediada por artefactos.
Resumo:
La mayoría de personas involucradas directa o indirectamente con la Educación Matemática estamos de acuerdo en que la comprensión de conceptos es el aspecto más relevante en la enseñanza y el aprendizaje de las Matemáticas. Nuestro objetivo es diseñar y aplicar una entrevista semiestructurada de carácter socrático, para describir cómo comprenden el concepto de Continuidad cuatro estudiantes de cursos de cálculo diferencial en Instituciones oficiales de la ciudad de Medellín. Para alcanzar este objetivo utilizamos la entrevista semiestructurada de carácter socrático, como instrumento principal de recolección de información, así como observaciones y materiales escritos; la entrevista a su vez se convirtió en una estrategia metodológica para mejorar la comprensión de los estudiantes, en el marco de la Teoría de Pirie y Kieren, nuestro Marco Teórico.
Resumo:
La presente comunicación busca poner de manifiesto algunas consideraciones que se pueden tener en cuenta a la hora de diseñar rutas de aprendizaje en torno al concepto de límite. En este sentido, el documento se estructura por medio de dos preguntas cuyas respuestas coinciden con las dos principales consideraciones resultado de este trabajo; dichos interrogantes (para qué de la enseñanza del límite, y cómo lograrla) permiten evidenciar la comprensión del concepto límite como un proceso que da lugar al desarrollo de procesos de profundización, con los cuales se alcanza la forma más pura de la competencia matemática.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.
Resumo:
Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.
Resumo:
En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.
Resumo:
En este trabajo presentamos el estudio semiótico de las respuestas de estudiantes mexicanos de Educación Secundaria y Bachillerato con el fin de detectar conflictos semióticos sobre la comprensión del concepto de mediana. Se observa mayor dificultad en ambos grupos al resolver estos problemas de un cuestionario sobre medidas de tendencia central. Utilizamos el Enfoque Onto‐Semiótico propuesto por Godino y colaboradores. Clasificamos las respuestas en categorías de los conflictos semióticos encontrados y comparamos los resultados en ambos grupos de estudiantes.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
La presente investigación centra la atención en el contexto de la Teoría de Representaciones Sociales propuesta por Moscovici en 1961. Apoyándonos en esta teoría, realizamos un estudio y análisis de las Representaciones Sociales acerca del concepto “Matemática”, trabajo que tiene por objetivo identificar, analizar e interpretar algunos de los elementos que forman parte del sistema central, mediante un cuestionario aplicado a 29 estudiantes de preparatoria que forman parte del Instituto de Ciencia y Tecnología del Distrito Federal.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.