107 resultados para Conocimiento matemático
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.
Resumo:
Este documento se usa el constructo teórico Humans-with-Media para analizar una situación construida con el software Geogebra. La situación muestra un posible entendimiento de la función derivada a partir del reconocimiento de la “función tasa de variación”.
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
En el presente artículo se presentan los resultados del análisis de formas y usos del conocimiento matemático que subyacen en torno a ciertas prácticas en una comunidad de Biología Marina y en el área de producción de una empresa. Se trata de un estudio socioepistemológico que se llevó a cabo para identificar el papel del contexto en el uso y funcionalidad de dicho conocimiento en escenarios no escolares, con el propósito de reconocer condiciones socioculturales que posibiliten la transferencia del conocimiento escolar al entorno del estudiante.
Resumo:
La estrategia didáctica es uno de los resultados de la investigación que realiza el grupo de matemática educativa de la Universidad de Camagüey. Tiene como objetivo diseñar una estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática de la Universidad de Camagüey. La misma centra sus resultados científicos fundamentales en un modelo teórico para la formación y desarrollo de la competencia organizar e interpretar el conocimiento matemático. En esta estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática presenta un set de instrumentos e indicadores para evaluar la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático. En el desarrollo de la investigación se utilizaron diferentes métodos, y la implementación se realizó en dos grupos de esta facultad con resultados satisfactorios. Con esta investigación se contribuye al Perfeccionamiento de la Educación Superior.
Resumo:
La Socioepistemología a través de diversos resultados de investigación, señala la conveniencia de hacer estudios del uso del conocimiento matemático y su desarrollo para crear un marco que ofrezca las prácticas de referencia en donde se resignifique la matemática. Bajo esa premisa estudiamos los usos de la gráfica en el bachillerato, con el fin de construir un marco de referencia que dé evidencia de los funcionamientos y formas de las gráficas y en consecuencia una resignificación del conocimiento. Lo anterior abre una nueva brecha para tratar a la gráfica, puesto que no la miramos como la representación de algún concepto matemático. Por el contrario, la graficación es abordada como la argumentación que genera conocimiento. En ese sentido, afirmamos que tratamos con una segmentación del conocimiento, puesto que hay un cambio de enfoque que nos conduce a teorizar sobre el uso del conocimiento y como consecuencia se genera un subuniverso de significados.
Resumo:
Diversas investigaciones se interesan por la inserción de los “conocimientos previos” de los estudiantes en el proceso de aprendizaje de las matemáticas, considerándolos como bases iniciales de significados que deben ser sustituidos por medio de la instrucción “formal”. A diferencia de lo anterior, el propósito de la investigación es legitimar los saberes que se encuentran en el cotidiano. Para ello, se conforma, desde la socioepistemología, la categoría del cotidiano del ciudadano que resalta una función social particular del conocimiento matemático. Para la conformación de la evidencia empírica, se da cuenta de los usos de las gráficas en talleres de divulgación científica, evidenciando cómo el cotidiano brinda elementos funcionales que podrían conformar parte de un rediseño del discurso matemático escolar.
Resumo:
Lo social en la didáctica de la matemática ha logrado datos relevantes sobre la construcción del saber matemático y su ingreso al sistema didáctico. Con ello, se han marcado directrices para entender la complejidad del conocimiento matemático escolar y la articulación con las actividades y prácticas del humano para conocer. Se ha entendido lo que el humano organiza está fuera de la estructura matemática pero es fundamental para que ésta se desarrolle, de ahí la importancia del papel que debe desempeñar la reconstrucción de significados y de argumentos en el sistema didáctico.
Resumo:
Lo social en la didáctica de la matemática ha logrado datos relevantes sobre la construcción del saber matemático y su ingreso al sistema didáctico. Con ello, se han marcado directrices para entender la complejidad del conocimiento matemático escolar y la articulación con las actividades y prácticas del humano para conocer. Se ha entendido lo que el humano organiza está fuera de la estructura matemática pero es fundamental para que ésta se desarrolle, de ahí la importancia del papel que debe desempeñar la reconstrucción de significados y de argumentos en el sistema didáctico.
Resumo:
La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.
Resumo:
En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.
Resumo:
En Colombia existen pocos estudios relativos al objeto de esta investigación, los que hay son referidos a la básica primaria y preescolar. El tercer estudio internacional de matemáticas y ciencias TIMSS, es la continuación de una serie de estudios en educación matemática para establecer el alcance de los logros educativos en estas áreas. Por otro lado, la Agenda Internacional de Educación Matemática ha recomendado investigar algunos tópicos asociados a estos logros; el tema de esta investigación es uno de ellos. En este caso se ha indagado sobre muchos aspectos que rodean la formulación de logros hasta la evaluación de los mismos, por que estos direccionan el aprendizaje del conocimiento matemático escolar. De ahí que se deban tener en cuenta ciertos elementos teóricos y prácticos planteados en la legislación vigente para el sistema educativo y los procesos de desarrollo y pensamiento entre otros. El trabajo parte de una teorización de la evaluación como referente para analizar la información obtenida de una muestra aleatoria tomada de 15 colegios del Departamento del Cesar donde se entrevistó también aleatoriamente a 60 profesores y 552 estudiantes entre 7° y 11° grados. Los resultados muestran una categorización de los elementos que participan en este proceso como son: los fundamentos para plantear o establecer los logros del aprendizaje, los mecanismos para evaluar, la valoración por períodos, niveles de importancia de algunos factores cuando se evalúa, aspectos que determinan la evaluación, dificultades para valorar los logros, criterios para la evaluación, tipos de evaluación aplicadas por los profesores, objeto de la evaluación y otros. Como conclusión del análisis de esta información, se desprenden una serie de recomendaciones de cómo valorar los logros del aprendizaje matemático para contribuir al mejoramiento de las prácticas evaluativas y la formulación de logros por parte de los profesores de matemáticas.
Resumo:
En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.
Resumo:
El estudio de procesos de aprendizaje en el “aula tradicional” tiene que cambiar si queremos evidenciar otras formas de construcción del conocimiento matemático, por ello es necesario considerar otros escenarios donde la matemática no es objeto de estudio pero que sin embargo el conocimiento matemático subyace. Un ejemplo de esto es el conocimiento cotidiano en un escenario de difusión, característico de ideas, intuiciones o sentido común donde subyace una matemática. Con lo anterior se hace un estudio bajo la teoría socioepistemológica, tratando de caracterizar este conocimiento hacia su uso mediante ideas variacionales con tecnología. Con el estudio del uso del conocimiento, se intenta desarrollar un pensamiento variacional característico del escenario a través del constructo “uso de la gráfica”, donde además se intenta encontrar alguna evidencia de nociones de integración tecnológica al conocimiento del participante.
Resumo:
Se reporta parte de un estudio acerca de evaluación de los aprendizaje en el área de matemática, en el cual se plantearon, entre otros, los siguientes objetivos: (a) describir e interpretar el proceso de construcción de portafolios elaborados por estudiantes de Ing. Industrial de la U.N.E.G. como parte de su práctica evaluativa y (b) orientar el proceso de elaboración, manejo y uso del portafolios en el aula, para ser utilizados como formas escritas de evaluación del aprendizaje matemático. El fundamento teórico es: (a) la concepción de evaluación de Díaz y Hernández (1998) y Salcedo ([995); (b) una visión de la teoría del desarrollo cognitivo de Piaget según González (1994); (c) la teoría constructivista del aprendizaje significativo de Ausubel (1980) y (d) una adaptación de los elementos: estructura de 1a actividad y segmentos de actividad de Stodolsky (|99|). La metodología de investigación utilizada se inscribe en el paradigma fenomenológico y cualitativo (Pérez Serrano, 1994), con un diseño etnográfico (Martinez, 1994) para la descripción detallada de los hechos y su interpretación. Las conclusiones más sobresalientes se refieren a que la construcción de portafolios permite ver la evaluación como parte de un proceso y no de forma aislada; en particular, permite reconocer en los estudiantes, procesos de pensamiento más profundos, relacionados con el conocimiento matemático procedimental y con el desarrollo de su poder matemático.