352 resultados para National Science Foundation (U.S.). Directorate for Geosciences.
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].
Resumo:
This article introduces ART 2-A, an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART 2 neural network architecture, but at a speed two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate learning rates. Intermediate learning rates permit fast commitment of category nodes but slow recoding, analogous to properties of word frequency effects, encoding specificity effects, and episodic memory. Better noise tolerance is hereby achieved without a loss of learning stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm. The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural computation.
Resumo:
BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088)
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.
Resumo:
A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.
Resumo:
A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.
Resumo:
A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.
Resumo:
This paper attempts a rational, step-by-step reconstruction of many aspects of the mammalian neural circuitry known to be involved in the spinal cord's regulation of opposing muscles acting on skeletal segments. Mathematical analyses and local circuit simulations based on neural membrane equations are used to clarify the behavioral function of five fundamental cell types, their complex connectivities, and their physiological actions. These cell types are: α-MNs, γ-MNs, IaINs, IbINs, and Renshaw cells. It is shown that many of the complexities of spinal circuitry are necessary to ensure near invariant realization of motor intentions when descending signals of two basic types independently vary over large ranges of magnitude and rate of change. Because these two types of signal afford independent control, or Factorization, of muscle LEngth and muscle TEnsion, our construction was named the FLETE model (Bullock and Grossberg, 1988b, 1989). The present paper significantly extends the range of experimental data encompassed by this evolving model.
Resumo:
How do human observers perceive a coherent pattern of motion from a disparate set of local motion measures? Our research has examined how ambiguous motion signals along straight contours are spatially integrated to obtain a globally coherent perception of motion. Observers viewed displays containing a large number of apertures, with each aperture containing one or more contours whose orientations and velocities could be independently specified. The total pattern of the contour trajectories across the individual apertures was manipulated to produce globally coherent motions, such as rotations, expansions, or translations. For displays containing only straight contours extending to the circumferences of the apertures, observers' reports of global motion direction were biased whenever the sampling of contour orientations was asymmetric relative to the direction of motion. Performance was improved by the presence of identifiable features, such as line ends or crossings, whose trajectories could be tracked over time. The reports of our observers were consistent with a pooling process involving a vector average of measures of the component of velocity normal to contour orientation, rather than with the predictions of the intersection-of-constraints analysis in velocity space.
Resumo:
A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.
Resumo:
A neural network is introduced which provides a solution of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space. To do this, the network self-organizes a mapping from motion directions in 3-D space to velocity commands in joint space. Computer simulations demonstrate that, without any additional learning, the network can generate accurate movement commands that compensate for variable tool lengths, clamping of joints, distortions of visual input by a prism, and unexpected limb perturbations. Blind reaches have also been simulated.
Resumo:
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.
Resumo:
A feedforward neural network for invariant image preprocessing is proposed that represents the position1 orientation and size of an image figure (where it is) in a multiplexed spatial map. This map is used to generate an invariant representation of the figure that is insensitive to position1 orientation, and size for purposes of pattern recognition (what it is). A multiscale array of oriented filters followed by competition between orientations and scales is used to define the Where filter.
Resumo:
This article describes a. neural pattern generator based on a cooperative-competitive feedback neural network. The two-channel version of the generator supports both in-phase and anti-phase oscillations. A scalar arousal level controls both the oscillation phase and frequency. As arousal increases, oscillation frequency increases and bifurcations from in-phase to anti-phase, or anti-phase to in-phase oscillations can occur. Coupled versions of the model exhibit oscillatory patterns which correspond to the gaits used in locomotion and other oscillatory movements by various animals.
Resumo:
This article describes a neural network model capable of generating a spatial representation of the pitch of an acoustic source. Pitch is one of several auditory percepts used by humans to separate multiple sound sources in the environment from each other. The model provides a neural instantiation of a type of "harmonic sieve". It is capable of quantitatively simulating a large body of psychoacoustical data, including new data on octave shift perception.