Working Memory Networks for Learning Multiple Groupings of Temporarily Ordered Events: Applications to 3-D Visual Object Recognition


Autoria(s): Bradski, Gary; Carpenter, Gail A.; Grossberg, Stephen
Data(s)

14/11/2011

14/11/2011

01/02/1991

Resumo

Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].

Air Force Office of Scientific Research (90-128, 90-0175); British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI 90-00530, IRI 87-16960)

Identificador

http://hdl.handle.net/2144/2062

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-1991-007

Direitos

Copyright 1991 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Tipo

Technical Report