7 resultados para eigenvalues
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The statistical properties of trajectories of eigenvalues of Gaussian complex matrices whose Hermitian condition is progressively broken are investigated. It is shown how the ordering on the real axis of the real eigenvalues is reflected in the structure of the trajectories and also in the final distribution of the eigenvalues in the complex plane.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.
Resumo:
Let phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled.
Resumo:
The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]
Resumo:
This work clarifies the relationship between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e. g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M) and return to circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection) was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.