Asymptotic integral kernel for ensembles of random normal matrices with radial potentials


Autoria(s): Veneziani, Alexei M.; Pereira, Tiago; Marchetti, Domingos Humberto Urbano
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]

FAPESP [02/10954-7]

Identificador

JOURNAL OF MATHEMATICAL PHYSICS, MELVILLE, v. 53, n. 2, supl. 1, Part 3, pp. 769-800, FEB, 2012

0022-2488

http://www.producao.usp.br/handle/BDPI/41087

10.1063/1.3688293

http://dx.doi.org/10.1063/1.3688293

Idioma(s)

eng

Publicador

AMER INST PHYSICS

MELVILLE

Relação

JOURNAL OF MATHEMATICAL PHYSICS

Direitos

restrictedAccess

Copyright AMER INST PHYSICS

Palavras-Chave #WAVE-FUNCTIONS #UNIVERSALITY #EIGENVALUES #FÍSICA MATEMÁTICA #FUNÇÕES ONDULATÓRIAS #UNIVERSALIDADE #PHYSICS, MATHEMATICAL
Tipo

article

original article

publishedVersion