Asymptotic integral kernel for ensembles of random normal matrices with radial potentials
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
05/11/2013
05/11/2013
2012
|
Resumo |
The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293] FAPESP [02/10954-7] |
Identificador |
JOURNAL OF MATHEMATICAL PHYSICS, MELVILLE, v. 53, n. 2, supl. 1, Part 3, pp. 769-800, FEB, 2012 0022-2488 http://www.producao.usp.br/handle/BDPI/41087 10.1063/1.3688293 |
Idioma(s) |
eng |
Publicador |
AMER INST PHYSICS MELVILLE |
Relação |
JOURNAL OF MATHEMATICAL PHYSICS |
Direitos |
restrictedAccess Copyright AMER INST PHYSICS |
Palavras-Chave | #WAVE-FUNCTIONS #UNIVERSALITY #EIGENVALUES #FÍSICA MATEMÁTICA #FUNÇÕES ONDULATÓRIAS #UNIVERSALIDADE #PHYSICS, MATHEMATICAL |
Tipo |
article original article publishedVersion |