Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
21/02/2014
21/02/2014
01/01/2014
|
Resumo |
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space. FAPESP-Brasil, processo n. 2010/00478-0 e 2010/19734-6 |
Identificador |
Journal of Approximation Theory, San Diego, v.177, p.57-68, 2014 http://www.producao.usp.br/handle/BDPI/44032 10.1016/j.jat.2013.10.002 |
Idioma(s) |
eng |
Publicador |
Academic Press Elsevier San Diego |
Relação |
Journal of Approximation Theory |
Direitos |
restrictedAccess Copyright Elsevier |
Palavras-Chave | #Sphere #Integral operators #Eigenvalue estimates #Dot product kernels #Gaussian kernel #ANÁLISE FUNCIONAL |
Tipo |
article original article publishedVersion |