Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere


Autoria(s): Azevedo, D.; Menegatto, Valdir Antonio
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

21/02/2014

21/02/2014

01/01/2014

Resumo

We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.

FAPESP-Brasil, processo n. 2010/00478-0 e 2010/19734-6

Identificador

Journal of Approximation Theory, San Diego, v.177, p.57-68, 2014

http://www.producao.usp.br/handle/BDPI/44032

10.1016/j.jat.2013.10.002

http://dx.doi.org/10.1016/j.jat.2013.10.002

Idioma(s)

eng

Publicador

Academic Press

Elsevier

San Diego

Relação

Journal of Approximation Theory

Direitos

restrictedAccess

Copyright Elsevier

Palavras-Chave #Sphere #Integral operators #Eigenvalue estimates #Dot product kernels #Gaussian kernel #ANÁLISE FUNCIONAL
Tipo

article

original article

publishedVersion