16 resultados para constraint based design

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In deterministic optimization, the uncertainties of the structural system (i.e. dimension, model, material, loads, etc) are not explicitly taken into account. Hence, resulting optimal solutions may lead to reduced reliability levels. The objective of reliability based design optimization (RBDO) is to optimize structures guaranteeing that a minimum level of reliability, chosen a priori by the designer, is maintained. Since reliability analysis using the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in its classical version) is a double-loop strategy: the reliability analysis (inner loop) and the structural optimization (outer loop). The coupling of these two loops leads to very high computational costs. To reduce the computational burden of RBDO based on FORM, several authors propose decoupling the structural optimization and the reliability analysis. These procedures may be divided in two groups: (i) serial single loop methods and (ii) unilevel methods. The basic idea of serial single loop methods is to decouple the two loops and solve them sequentially, until some convergence criterion is achieved. On the other hand, uni-level methods employ different strategies to obtain a single loop of optimization to solve the RBDO problem. This paper presents a review of such RBDO strategies. A comparison of the performance (computational cost) of the main strategies is presented for several variants of two benchmark problems from the literature and for a structure modeled using the finite element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 angstrom, a = 105, beta = 101, ? = 95 degrees. The resulting crystals diffracted to a maximal resolution of 2.24 angstrom and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper makes an analysis on the new technological resources related to architectural drawing that make use of the hand drawing. It tests and evaluates the use of new tools such as tablets (e.g. Wacom Bamboo), graphic tablets (e.g. iPad), tablet/screen hybrids (e.g. Wacom Cintiq) and electronic pens (e.g. Wacom Inkling) in the making of free drawings oriented for the developing of graphic products related to the projective act in architecture and design. The paper makes a comparative e interpretative analysis through the reading of those products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research studies the use of digital games as a playful tool approach of knowledge in architecture heritage. We emphasize the potential of digital games as a tool and importance of digital drawing combined with programming language, the means by which the making of the games became possible. The models developed are based on the properties of historical and cultural interest in the city of São Carlos, Brasil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this paper is to present an analysis of a segmented weir sieve-tray distillation column for a 17.58 kW (5 TR) ammonia/water absorption refrigeration cycle. Balances of mass and energy were performed based on the method of Ponchon-Savarit, from which it was possible to determine the ideal number of trays. The analysis showed that four ideal trays were adequate for that small absorption refrigeration system having the feeding system to the column right above the second tray. It was carried out a sensitivity analysis of the main parameters. Vapor and liquid pressure drop constraint along with ammonia and water mass flow ratios defined the internal geometrical sizes of the column, such as the column diameter and height, as well as other designing parameters. Due to the lack of specific correlations, the present work was based on practical correlations used in the petrochemical and beverage production industries. The analysis also permitted to obtain the recommended values of tray spacing in order to have a compact column. The geometry of the tray turns out to be sensitive to the charge of vapor and, to a lesser extent, to the load of the liquid, being insensible to the diameter of tray holes. It was found a column efficiency of 50%. Finally, the paper presents some recommendations in order to have an optimal geometry for a compact size distillation column. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome-proliferator-activated receptors are a class of nuclear receptors with three subtypes: a, ? and d. Their main function is regulating gene transcription related to lipid and carbohydrate metabolism. Currently, there are no peroxisome-proliferator-activated receptors d drugs being marketed. In this work, we studied a data set of 70 compounds with a and d activity. Three partial least square models were created, and molecular docking studies were performed to understand the main reasons for peroxisome-proliferator-activated receptors d selectivity. The obtained results showed that some molecular descriptors (log P, hydration energy, steric and polar properties) are related to the main interactions that can direct ligands to a particular peroxisome-proliferator-activated receptors subtype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The novel coumarin-based 'turn-on' fluorescent probe (E)-3-(2,5-dimethoxybenzylideneamino)-7-hydroxy-2H-chromen-2-one (MGM) was designed, synthesized, and characterized. This compound shows high selectivity for Cu+2, combined with a large fluorescence enhancement upon binding to Cu2+. Benesi-Hildebrand and Job plots demonstrate that the stoichiometry of the Cu+2 complex formed is 2:1. Preliminary studies employing epifluorescence microscopy demonstrated that Cu+2 could be imaged in human neuroblastoma SH-SY5Y cells treated with MGM. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topical chemotherapy using doxorubicin, a powerful anticancer drug, can be used as an alternative with reduced systemic toxicity when treating skin cancer. The aim of the present work was to use factorial design-based studies to develop cationic solid lipid nanoparticles containing doxorubicin; further investigations into the influence of these particles on the drug's cytotoxicity and cellular uptake in B16F10 murine melanoma cells were performed. A 3(2) full factorial design was applied for two different lipid phases; one phase used stearic acid and the other used a 1:2 mixture of stearic acid and glyceryl behenate. The two factors investigated included the ratio between the lipid and the water phase and the ratio between the surfactant (poloxamer) and the co-surfactant (cetylpyridinium chloride). It was observed that the studied factors did not affect the mean diameter or the polydispersity of the obtained nanoparticles; however, they did significantly affect the zeta potential values. Optimised formulations with particle sizes ranging from 251 to 306 nm and positive zeta potentials were selected for doxorubicin incorporation. High entrapment efficiencies were achieved (97%) in formulations with higher amounts of stearic acid, suggesting that cationic charges on doxorubicin molecules may interact with the negative charges in stearic acid. Melanoma culture cell experiments showed that cationic solid lipid nanoparticles without drug were not cytotoxic to melanoma cells. The encapsulation of doxorubicin significantly increased cytotoxicity, indicating the potential of these nanoparticles for the treatment of skin cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bromodomains are epigenetic reader domains that have recently become popular targets. In contrast to BET bromodomains, which have proven druggable, bromodomains from other regions of the phylogenetic tree have shallower pockets. We describe successful targeting of the challenging BAZ2B bromodomain using biophysical fragment screening and structure-based optimization of high ligand-efficiency fragments into a novel series of low-micromolar inhibitors. Our results provide attractive leads for development of BAZ2B chemical probes and indicate the whole family may be tractable.