Design-based random permutation models with auxiliary information


Autoria(s): Li, Wenjun; Stanek, Edward J., III; Singer, Julio M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

29/10/2013

29/10/2013

2012

Resumo

We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.

National Institutes of Health, USA [NIH-PHS-R01-HD36848, R01-HL071828-02, 5R01HL079483]

National Institutes of Health, USA

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Identificador

STATISTICS, ABINGDON, v. 46, n. 5, supl. 1, Part 3, pp. 663-671, MAY, 2012

0233-1888

http://www.producao.usp.br/handle/BDPI/36325

10.1080/02331888.2010.545408

http://dx.doi.org/10.1080/02331888.2010.545408

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS LTD

ABINGDON

Relação

STATISTICS

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS LTD

Palavras-Chave #AUXILIARY VARIABLE #DESIGN-BASED INFERENCE #PREDICTION #FINITE SAMPLING #RANDOM PERMUTATION MODEL #SIMULTANEOUS PERMUTATION #SAMPLE SURVEYS #PREDICTION #STATISTICS & PROBABILITY
Tipo

article

original article

publishedVersion