21 resultados para automated instruments
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work assessed homogeneity of the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) weather station climate series, using various statistical techniques. The record from this target station is one of the longest in Brazil, having commenced in 1933 with observations of precipitation, and temperatures and other variables later in 1936. Thus, it is one of the few stations in Brazil with enough data for long-term climate variability and climate change studies. There is, however, a possibility that its data may have been contaminated by some artifacts over time. Admittedly, there was an intervention on the observations in 1958, with the replacement of instruments, for which the size of impact has not been yet evaluated. The station transformed in the course of time from rural to urban, and this may also have influenced homogeneity of the observations and makes the station less representative for climate studies over larger spatial scales. Homogeneity of the target station was assessed applying both absolute, or single station tests, and tests relatively to regional climate, in annual scale, regarding daily precipitation, relative humidity, maximum (TMax), minimum (TMin), and wet bulb temperatures. Among these quantities, only precipitation does not exhibit any inhomogeneity. A clear signal of change of instruments in 1958 was detected in the TMax and relative humidity data, the latter certainly because of its strong dependence on temperature. This signal is not very clear in TMin, but it presents non-climatic discontinuities around 1953 and around 1970. A significant homogeneity break is found around 1990 for TMax and wet bulb temperature. The discontinuities detected after 1958 may have been caused by urbanization, as the observed warming trend in the station is considerably greater than that corresponding to regional climate.
Resumo:
Traditional abduction imposes as a precondition the restriction that the background information may not derive the goal data. In first-order logic such precondition is, in general, undecidable. To avoid such problem, we present a first-order cut-based abduction method, which has KE-tableaux as its underlying inference system. This inference system allows for the automation of non-analytic proofs in a tableau setting, which permits a generalization of traditional abduction that avoids the undecidable precondition problem. After demonstrating the correctness of the method, we show how this method can be dynamically iterated in a process that leads to the construction of non-analytic first-order proofs and, in some terminating cases, to refutations as well.
Resumo:
State of Sao Paulo Research Foundation (FAPESP), Brazil
Resumo:
A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for determination of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in human plasma has been developed, validated, and further applied to pharmacokinetic study in pregnant women with gestational diabetes mellitus (GDM) subjected to epidural anesthesia. Important factors in the optimization of in-tube SPME performance are discussed, including the draw/eject sample volume, draw/eject cycle number, draw/eject flow rate, sample pH, and influence of plasma proteins. The limits of quantification of the in-tube SPME/LC method were 50 ng/mL for both metabolite and lidocaine. The interday and intraday precision had coefficients of variation lower than 8%, and accuracy ranged from 95 to 117%. The response of the in-tube SPME/LC method for analytes was linear over a dynamic range from 50 to 5000 ng/mL, with correlation coefficients higher than 0.9976. The developed in-tube SPME/LC method was successfully used to analyze lidocaine and its metabolite in plasma samples from pregnant women with GDM subjected to epidural anesthesia for pharmacokinetic study.
Resumo:
In this paper we investigate the influence of extractives, lignin and holocellulose contents on performance index (PI) of seven woods used or tested for violin bows. Woods with higher values of this index (PI = root MOE/rho, where MOE is modulus of elasticity and rho is density) have a higher bending stiffness at a given mass, which can be related to bow wood quality. Extractive content was negatively correlated with PI in Caesalpinia echinata, Hanclroanthus sp. and Astronium lecointei. In C. echinata holocellulose was positively correlated with PI. These results need to be further explored with more samples and by testing additional wood properties. Although the chemical constituents could provide an indication of quality, it is not possible to establish appropriate woods for bows solely by examining their chemical constituents.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, Pro Taper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the Pro Taper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1. - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the Pro Taper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (x1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
Objective: This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods: The operators prepared one canal with RaCe rotary instruments and another with Flexofiles. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radial's, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results: There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion: The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.
Resumo:
Purpose: Automated weaning modes are available in some mechanical ventilators, but no studies compared them hitherto. We compared the performance of 3 automated modes under standard and challenging situations. Methods: We used a lung simulator to compare 3 automated modes, adaptive support ventilation (ASV), mandatory rate ventilation (MRV), and Smartcare, in 6 situations, weaning success, weaning failure, weaning success with extreme anxiety, weaning success with Cheyne-Stokes, weaning success with irregular breathing, and weaning failure with ineffective efforts. Results: The 3 modes correctly recognized the situations of weaning success and failure, even when anxiety or irregular breathing were present but incorrectly recognized weaning success with Cheyne-Stokes. MRV incorrectly recognized weaning failure with ineffective efforts. Time to pressure support (PS) stabilization was shorter for ASV (1-2 minutes for all situations) and MRV (1-7 minutes) than for Smartcare (8-78 minutes). ASV had higher rates of PS oscillations per 5 minutes (4-15), compared with Smartcare (0-1) and MRV (0-12), except when extreme anxiety was present. Conclusions: Smartcare, ASV, and MRV were equally able to recognize weaning success and failure, despite the presence of anxiety or irregular breathing but performed incorrectly in the presence of Cheyne-Stokes. PS behavior over the time differs among modes, with ASV showing larger and more frequent PS oscillations over the time. Clinical studies are needed to confirm our results. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Introduction: The aim of this study was to assess the effect of nitrogen ion implantation on the flexibility of rotary nickel-titanium (NiTi) instruments as measured by the load required to bend implanted and nonimplanted instruments at a 30 degrees angle. Methods: Thirty K3 files, size #40, 0.02 taper and 25-mm length, were allocated into 2 groups as follows: group A, 15 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), voltage 200 KeV, current density 1 mu A/cm(2), temperature 130 degrees C, and vacuum conditions of 10 x 10(-6) mm Hg for 6 hours; and group B, 15 nonimplanted files. One extra file was used for process control. All instruments were subjected to bend testing on a modified troptometer, with measurement of the load required for flexure to an angle of 30 degrees. The Mann-Whitney U test was used for statistical analysis. Findings with P <.05 were considered significant. Results: The mean load required to bend instruments at a 30 degrees angle was 376.26 g for implanted instruments and 383.78 g for nonimplanted instruments. The difference was not statistically significant. Conclusions: Our findings show that nitrogen ion implantation has no appreciable effect on the flexibility of NiTi instruments. (J Endod 2012;38:673-675)
Resumo:
2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
gamma Cas is the prototypical classical Be star and is recently best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around four XMM-Newton observations. The observational techniques included long baseline optical interferometry (LBOI) from two instruments at CHARA, photometry carried out by an automated photometric telescope and H alpha observations. Because gamma Cas is also known to be in a binary, we measured radial velocities from the H alpha line and redetermined its period as 203.55 +/- 0.20 days and its eccentricity as near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an system inclination angle near 45 degrees, and a larger radius than previously reported. In addition, the Be star began an "outburst" at the beginning of our campaign, made visible by a brightening and reddening of the disk during our campaign and beyond. Our analyses of the new high resolution spectra disclosed many attributes also found from spectra obtained in 2001 (Chandra) and 2004 (XMM-Newton). As well as a dominant hot (approximate to 14 keV) thermal component, the familiar attributes included: (i) a fluorescent feature of Fe K even stronger than observed at previous times; (ii) strong lines of N VII and Ne XI lines indicative of overabundances; and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that two absorption columns are required to fit the continuum. While the first one maintained its historical average of 1 x 10(21) cm(-2), the second was very large and doubled to 7.4 x 10(23) cm(-2) during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.
Resumo:
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Resumo:
In this manuscript, an automatic setup for screening of microcystins in surface waters by employing photometric detection is described. Microcystins are toxins delivered by cyanobacteria within an aquatic environment, which have been considered strongly poisonous for humans. For that reason, the World Health Organization (WHO) has proposed a provisional guideline value for drinking water of 1 mu g L-1. In this work, we developed an automated equipment setup, which allows the screening of water for concentration of microcystins below 0.1 mu g V. The photometric method was based on the enzyme-linked immunosorbent assay (ELISA) and the analytical signal was monitored at 458 nm using a homemade LED-based photometer. The proposed system was employed for the detection of microcystins in rivers and lakes waters. Accuracy was assessed by processing samples using a reference method and applying the paired t-test between results. No significant difference at the 95% confidence level was observed. Other useful features including a linear response ranging from 0.05 up to 2.00 mu g L-1 (R-2 =0.999) and a detection limit of 0.03 mu g L-1 microcystins were achieved. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: To review the clinical characteristics of patients with neuromyelitis optica (NMO) and to compare their visual outcome with those of patients with optic neuritis (ON) and multiple sclerosis (MS). Methods: Thirty-three patients with NMO underwent neuro-ophthalmic evaluation, including automated perimetry along with 30 patients with MS. Visual function in both groups was compared overall and specifically for eyes after a single episode of ON. Results: Visual function and average visual field (VF) mean deviation were significantly worse in eyes of patients with NMO. After a single episode of ON, the VF was normal in only 2 of 36 eyes of patients with NMO compared to 17 of 35 eyes with MS (P < 0.001). The statistical analysis indicated that after a single episode of ON, the odds ratio for having NMO was 6.0 (confidence interval [CI]: 1.6-21.9) when VF mean deviation was worse than -20.0 dB while the odds ratio for having MS was 16.0 (CI: 3.6-68.7) when better than -3.0 dB. Conclusion: Visual outcome was significantly worse in NMO than in MS. After a single episode of ON, suspicion of NMO should be raised in the presence of severe residual VF deficit with automated perimetry and lowered in the case of complete VF recovery.
Resumo:
Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.