35 resultados para Pharmaceutical formulations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 x 10(-4) mol L-1 to 1.1 x 10(-3) mol L-1 with a detection limit of 8.0 x 10(-5) mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 x 10(-4) mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h(-1) and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.
Resumo:
A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45-84.7 mu mol L-1 range with a LOD = 2.23 mu mol L-1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.
Resumo:
Losartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L-1 (2.71x10(-4) mol L-1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.
Resumo:
Metronidazole is a BCS (Biopharmaceutics Classification System) class 1 drug, traditionally considered the choice drug in the infections treatment caused by protozoa and anaerobic microorganisms. This study aimed to evaluate bioequivalence between 2 different marketed 250 mg metronidazole immediate release tablets. A randomized, open-label, 2 x 2 crossover study was performed in healthy Brazilian volunteers under fasting conditions with a 7-day washout period. The formulations were administered as single oral dose and blood was sampled over 48 h. Metronidazole plasma concentrations were determined by a liquid chromatography mass spectrometry (LC-MS/MS) method. The plasma concentration vs. time profile was generated for each volunteer and the pharmacokinetic parameters C-max, T-max, AUC(0-t), AUC(0-infinity), k(e), and t(1/2) were calculated using a noncompartmental model. Bioequivalence between pharmaceutical formulations was determined by calculating 90% CIs (Confidence Intervall) for the ratios of C-max, AUC(0-t), and AUC(0-infinity) values for test and reference using log-transformed data. 22 healthy volunteers (11 men, 11 women; mean (SD) age, 28 (6.5) years [range, 21-45 years]; mean (SD) weight, 66 (9.3) kg [range, 51-81 kg]; mean (SD) height, 169 (6.5) cm [range, 156-186 cm]) were enrolled in and completed the study. The 90% CIs for C-max (0.92-1.06), AUC(0-t) (0.97-1.02), and AUC(0-infinity) (0.97-1.03) values for the test and reference products fitted in the interval of 0.80-1.25 proposed by most regulatory agencies, including the Brazilian agency ANVISA. No clinically significant adverse effects were reported. After pharmacokinetics analysis, it concluded that test 250 mg metronidazole formulation is bioequivalent to the reference product according to the Brazilian agency requirements.
Resumo:
Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between beta-cyclodextrin (beta CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with beta CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the beta CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that beta CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 degrees C, pH 7.2) showed higher stability of peptide in presence of beta CD. This beta CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A multiwall carbon nanotube/silicone rubber (MWCNT/SR) composite electrode has been used for the determination of hydrochlorothiazide (HCTZ) in pharmaceutical formulations by differential pulse voltammetry (DPV). The electro-oxidation process was evaluated by cyclic voltammetry, from which it was observed that HCTZ presents an irreversible oxidation peak at 0.82 V vs. saturated calomel electrode (SCE) in the potential range from 0.5 to 1.1 V, in Britton-Robinson buffer pH 7.0 at MWCNT/SR. HCTZ was determined by DPV using a MWCNT/SR 70% (MWCNT, m/m) composite electrode after the optimization of the experimental parameters. The linear range was from 5.0 to 70.0 mu mol L-1, with a limit of detection (LOD) of 2.6 mu mol L-1. The HCTZ was determined in pharmaceutical formulations using the proposed composite electrode and the results agreed with those from the official high performance liquid chromatography (HPLC) method within 95% confidence level, according to the t-Student test.
Resumo:
Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Amperometry coupled to flow injection analysis (FIA) and to batch injection analysis (BIA) was used for the rapid and precise quantification of ciclopirox olamine in pharmaceutical products. The favourable hydrodynamic conditions provided by both techniques allowed a very high throughput (more than 300 injections per hour) with good linear range (2.0200 mu mol L-1) and low limits of detection (below 1.0 mu mol?L-1). The results obtained were compared with titration recommended by the American Pharmacopoeia and also using capillary electrophoresis. Good agreement between all results were achieved, demonstrating the good performance of amperometry combined with FIA and BIA.
Resumo:
A new concept for in vitro visual evaluation of sun protection factor (SPF) of cosmetic formulations based on a supramolecular ultraviolet (UV) dosimeter was clearly demonstrated. The method closely parallels the method validated for in vivo evaluation and relies on the determination of the slightest perceptible bleaching of an iron-complex dye/nanocrystallinetitanium dioxide interface (UV dosimeter) in combination with an artificial skin substrate simulating the actual human skin in the presence and absence of a cosmetic formulation. The successful evaluation of SPF was ensured by the similarity of the erythema response of our dosimeter and human skin to UV light irradiation. A good linear correlation of in vitro and in vivo data up to SPF 40 confirmed the effectiveness of such a simple, cheap, and fast method. In short, here we unravel a convenient and accessible visual FPS evaluation method that can help improving the control on cosmetic products contributing to the reduction of skin cancer, one of the critical public health issues nowadays. (C) 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:726732, 2012
Resumo:
A new trend in cosmetic formulations is the use of biotechnological raw materials as the polysaccharides from Klebsiella pneumoniae, which are supposed to enhance cell renewal, improve skin hydration and micro-relief. Botanical extracts of Myrtus communis leaves contain different sugars, which may provide the same benefits. Thus, the objective of this study was to evaluate through objective and subjective analysis the immediate and long-term effects of cosmetic formulations containing polysaccharides biotechnologically-originated and / or the ones contained in Myrtus communis extracts. Three polysaccharide-based and placebo formulations were applied on the forearm skin of 40 volunteers. Skin hydration, transepidermal water loss (TEWL), viscoelasticity and skin micro-relief measurements were made before and 2 hours after a single application and after 15 and 30 day-periods of daily applications. Answers to a questionnaire about perceptions of formulation cosmetic features constituted the subjective analysis. All polysaccharide-based formulations enhanced skin hydration. Formulations with isolated or combined active substances improved skin barrier function as compared to placebo, in the short and long term studies. Formulations containing Myrtus communis extracts had the highest acceptance. Results suggest that daily use of formulations containing these substances is important for protection of the skin barrier function.
Benefits of Combinations of Vitamin A, C and E Derivatives in the Stability of Cosmetic Formulations
Resumo:
Chemically stable ester derivatives of vitamins A, C and E have become a focus of interest for their role in the satisfactory results in skin aging treatments. Accordingly, the aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing 1% retinyl palmitate, ascorbyl tetraisopalmitate and tocopheryl acetate, alone or in combination. In the studies of physical stability, a Brookfield rheometer was used to determine rheological behavior of formulations containing the vitamins. Chemical stability was determined by HPLC on a Shimadzu system with UV detection. Results showed that formulations had pseudoplastic behavior and that vitamins did not alter their apparent viscosity and thixotropy. In the chemical stability studies, first-order reaction equations were used for determinations of the shelf-life of vitamins derivatives considering a remaining concentration of 85%. Combined vitamins in a single formulation had a slightly lower degradation rate as compared to different preparations containing only one of the vitamins. Considering that many cosmetic formulations contain vitamin combinations it is suggested that the present study may contribute to the development of more stable formulations containing liposoluble vitamins.
Resumo:
The aim of this study was to develop a formulation, containing the propolis standardized extract (EPP-AF (R)), which can assist in the healing of skin lesions. To achieve this objective the antimicrobial activity and chemical composition of the propolis extract was determined. The final product was subjected to in vitro and in vivo pre-clinical evaluation. The broth macrodi-lution method was used to determine the antimicrobial activity of the extracts and formulations against the microorganisms most commonly found in burns, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. Wistar rats with puncture wounded skin were used to evaluate the wound healing properties of propolis. The results of chemical and biological characterization demonstrated the batch-to-batch reproducibility of the standardized extract which is an unprecedented result. The antimicrobial and wound healing activity of the pharmaceutical studied showed the best results when samples contain 3.6% propolis, suggesting that this is the most promising composition.
Resumo:
This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography-mass spectrometry (GC-MS) associated with solid-phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane-divinylbenzene (PDMS-DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 mu g/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.
Resumo:
Epilepsy is the most common serious neurological disorder worldwide. Approximately 70% of patients with epilepsy have their seizures controlled by clinical and pharmacological treatment. This research evaluated the possible influence of interchangeability among therapeutic equivalents of LTG on the clinical condition and quality of life of refractory epileptic patients. The study was divided into three periods of 42 days, and an equivalent therapeutic LTG randomly dispensed for each period (two similars - formulations A and B, and the reference product - formulation C). The mean dose of LTG was 5.5 mg/kg/day. The presence of side effects tends to have a greater deleterious effect on quality of life of refractory epileptics compared to variations in number of seizures or changes in plasma concentrations. The results showed that independently of the drug prescribed, interchangeability among therapeutic equivalents can negatively impact epilepsy control.
Resumo:
With the purpose of evaluating the behavior of different polymers employed as binders in small-diameter pellets for oral administration, we prepared formulations containing paracetamol and one of the following polymers: PVP, PEG 1500, hydroxypropylmethylcellulose and methylcellulose, and we evaluated their different binding properties. The pellets were obtained by the extrusion/spheronization process and were subsequently subjected to fluid bed drying. In order to assess drug delivery, the United States Pharmacopeia (USP) apparatus 3 (Bio-Dis) was employed, in conjunction with the method described by the same pharmacopeia for the dissolution of paracetamol tablets (apparatus 1). The pellets were also evaluated for granulometry, friability, true density and drug content. The results indicate that the different binders used are capable of affecting production in different ways, and some of the physicochemical characteristics of the pellets, as well as the dissolution test, revealed that the formulations acted like immediate-release products. The pellets obtained presented favorable release characteristics for orally disintegrating tablets. USP apparatus 3 seems to be more adequate for discriminating among formulations than the basket method.