15 resultados para Free electron laser

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the synthesis of Au nanoparticles by 30-fs pulses irradiation of a sample containing HAuCl4 and chitosan, a biopolymer used as reducing agent and stabilizer. We observed that it is a multi-photon induced process, with a threshold irradiance of 3.8 x 10(11) W/cm(2) at 790 nm. By transmission electron microscopy we observed nanoparticles from 8 to 50 nm with distinct shapes. Infrared spectroscopy indicated that the reduction of gold and consequent production of nanoparticles is related to the fs-pulse induced oxidation of hydroxyl to carbonyl groups in chitosan. (C) 2011 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of Er:YAG laser (lambda = 2.94 mu m) on microtensile bond strength (mu TBS) and superficial morphology of bovine dentin bleached with 16% carbamide peroxide. Forty bovine teeth blocks (7 x 3 x 3 mm(3)) were randomly assigned to four groups: G1- bleaching and Er:YAG irradiation with energy density of 25.56 J/cm(2) (focused mode); G2 - bleaching; G3 - no-bleaching and Er:YAG irradiation (25.56 J/cm(2)); G4 - control, non-treated. G1 and G2 were bleached with 16% carbamide peroxide for 6 h during 21 days. Afterwards, all blocks were abraded with 320 to 600-grit abrasive papers to obtain flat standardized dentin surfaces. G1 and G3 were Er:YAG irradiated. Blocks were immediately restored with 4-mm-high composite resin (Adper Single Bond 2, Z-250-3 M/ESPE). After 24 h, the restored blocks (n = 9) were serially sectioned and trimmed to an hour-glass shape of approximately 1 mm(2) at the bonded interface area, and tested in tension in a universal testing machine (1 mm/ min). Failure mode was determined at a magnification of 100x using a stereomicroscope. One block of each group was selected for scanning electron microscope (SEM) analysis. mu TBS data was analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Mean bond strengths (SD) in MPa were: G1- 32.7 (5.9)(A); G2- 31.1 (6.3)(A); G3- 25.2 (8.3)(B); G4- 36.7 (9.9).(A) Groups with different uppercase letters were significantly different from each other (p < .05). Enamel bleaching procedure did not affect mu TBS values for dentin adhesion. Er:YAG laser irradiation with 25.56 J/cm(2) prior to adhesive procedure of bleached teeth did not affect mu TBS at dentin and promoted a dentin surface with no smear layer and opened dentin tubules observed under SEM. On the other hand, Er:YAG laser irradiation prior to adhesive procedure of non-bleached surface impaired mu TBS compared to the control group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite +/- hornblende + ilmenite magnetite +/- titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of similar to 1060-1090 degrees C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 khan Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilm(ss). In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts similar to 50% of whole-rock Sr and similar to 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2+) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the same minerals in LSO, where most of Zr and Hf are inferred to reside in zircon. The REE, Th and U reside mostly in titanite and apatite; D(REE)Tit/Ap raises steadily from 1 to 6 from La to Tb then remains constant up to Lu in the LSO sample; these values are about half as much in the LSS sample, where lower contents of incompatible elements in titanite are attributed to its greater modal abundance and earlier crystallization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of nanoassisted laser desorption-ionization mass spectrometry (NALDI-MS) imaging to provide selective chemical monitoring with proper spatial distribution of lipid profiles from tumor tissues after plate imprinting has been tested. NALDI-MS imaging identified and mapped several potential lipid biomarkers in a murine model of melanoma tumor (inoculation of B16/F10 cells). It also confirmed that the in vivo treatment of tumor bearing mice with synthetic supplement containing phosphoethanolamine (PHO-S) promoted an accentuated decrease in relative abundance of the tumor biomarkers. NALDI-MS imaging is a matrix-free LDI protocol based on the selective imprinting of lipids in the NALDI plate followed by the removal of the tissue. It therefore provides good quality and selective chemical images with preservation of spatial distribution and less interference from tissue material. The test case described herein illustrates the potential of chemically selective NALDI-MS imaging for biomarker discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to screen CO2 laser (10.6 mu m) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n = 20) with varying fluences from 0.1 to 0.9 J/cm(2), pulse durations from 80 to 400 mu s and repetition rates from 180 to 700 Hz. Non-lased samples (n = 30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 mu L/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n = 3). Data were statistically analysed by one-way ANOVA (p < 0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm(2) (200 mu s) at 450 Hz. Short-time reduction of calcium loss (<= 1.5 min) could be also achieved by irradiation with 0.7 J/cm(2) (300 mu s) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (degrees C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.