9 resultados para Flooding problem in the fields
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Planck scale physics may influence the evolution of cosmological fluctuations in the early stages of cosmological evolution. Because of the quasiexponential redshifting, which occurs during an inflationary period, the physical wavelengths of comoving scales that correspond to the present large-scale structure of the Universe were smaller than the Planck length in the early stages of the inflationary period. This trans-Planckian effect was studied before using toy models. The Horava-Lifshitz (HL) theory offers the chance to study this problem in a candidate UV complete theory of gravity. In this paper we study the evolution of cosmological perturbations according to HL gravity assuming that matter gives rise to an inflationary background. As is usually done in inflationary cosmology, we assume that the fluctuations originate in their minimum energy state. In the trans-Planckian region the fluctuations obey a nonlinear dispersion relation of Corley-Jacobson type. In the "healthy extension" of HL gravity there is an extra degree of freedom which plays an important role in the UV region but decouples in the IR, and which influences the cosmological perturbations. We find that in spite of these important changes compared to the usual description, the overall scale invariance of the power spectrum of cosmological perturbations is recovered. However, we obtain oscillations in the spectrum as a function of wave number with a relative amplitude of order unity and with an effective frequency which scales nonlinearly with wave number. Taking the usual inflationary parameters we find that the frequency of the oscillations is so large as to render the effect difficult to observe.
Resumo:
This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.
Resumo:
According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Context. Detections of molecular lines, mainly from H-2 and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial however. Aims. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. Methods. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Results. Our models show that the inclusion of an incident flux of X-rays is required to explain the molecular composition derived for planetary nebulae. We also obtain a more accurate relation for the N(CO)/N(H-2) ratio in these objects. Molecular masses obtained by previous works in the literature were then recalculated, showing that these masses can be underestimated by up to three orders of magnitude. We conclude that the problem of the missing mass in planetary nebulae can be solved by a more accurate calculation of the molecular mass.
Resumo:
In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions similar to 100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation.