Smart histogram analysis applied to the skull-stripping problem in T1-weighted MRI


Autoria(s): Balan, André G. R.; Traina, Agma Juci Machado; Ribeiro, Marcela Xavier; Marques, Paulo Mazzoncini de Azevedo; Traina Junior, Caetano
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

12/10/2013

12/10/2013

2012

Resumo

In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.

FAPESP-Brazil [03/01769-4, 05/04272-9, 07/50285-0]

CNPq-Brazil [471950/2004-1, 501214/2004-6]

Identificador

COMPUTERS IN BIOLOGY AND MEDICINE, OXFORD, v. 42, n. 5, pp. 509-522, MAY, 2012

0010-4825

http://www.producao.usp.br/handle/BDPI/34180

10.1016/j.compbiomed.2012.01.004

http://dx.doi.org/10.1016/j.compbiomed.2012.01.004

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

OXFORD

Relação

COMPUTERS IN BIOLOGY AND MEDICINE

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #MRI #BRAIN #IMAGE SEGMENTATION #SKULL-STRIPPING #HISTOGRAM ANALYSIS #BINARY MORPHOLOGY #BRAIN SEGMENTATION #AUTOMATIC SEGMENTATION #IMAGES #EXTRACTION #MORPHOLOGY #MODEL #BIOLOGY #COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS #ENGINEERING, BIOMEDICAL #MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tipo

article

original article

publishedVersion