24 resultados para Experimental intragastric infection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To confirm that Beagle dogs are a good experimental model for Chagas disease, we evaluated hematological alterations during the acute and chronic phases in Beagle dogs infected with the Y, Berenice-78 (Be-78) and ABC strains of Trypanosoma cruzi, correlating clinical signs with the parasitemia curve. We demonstrate that the acute phase of infection was marked by lethargy and loss of appetite. Simultaneously, we observed anemia, leukocytosis and lymphocytosis. Also,we describe hematological alterations and clinical signs that were positively correlated with the parasitemia during the experimental infection with the three strains of T cruzi, and demonstrate that experimental infection of Beagle is a trustworthy model for Chagas disease.
Resumo:
Previous studies showed that Santa Ines (SI) hair sheep were more resistant to gastrointestinal nematode infections (GIN) than Ile de France (IF) sheep. The present experiment aimed to evaluate if that reported resistance difference against GIN also occurred against Oestrus ovis infestation and also to evaluate the influence of O. ovis infestation on the gastrointestinal nematodes (GIN) infections. SI (n = 12) and IF (n = 12) young male lambs were weaned at 2 months of age and moved to a paddock (0.3 ha) with Brachiaria decumbens grass, where they also received concentrate ration. The animals were kept together during the experimental period (September to early December 2009). Fecal and blood samples were taken from all animals every 2 weeks and body weight and nasal discharge score (oestrosis clinic signs) were recorded on the same occasion. In early December 2009, all lambs were sacrificed and O. ovis larvae and GIN were recovered, counted and identified according to the larval stage. All animals were infested by different larval instars of O. ovis without any statistical difference between breeds (P > 0.05). The SI lambs had an average of 24.8 larvae, and the intensity of infection ranged between 14 and 39 larvae, while the IF lambs showed an average of 23.5 larvae with the minimum and maximum from 11 to 36 larvae, respectively. SI lambs presented the lowest nematode fecal egg counts (FECs) and the lowest mean numbers of Haemonchus contort us, Trichostrongylus colubriformis and Strongyloides papillosus, however, there was no significant differences between group means (P > 0.05). Inverse relationship between numbers of O. ovis larvae and gastrointestinal nematodes was observed in both breeds. SI sheep showed a significant increase in blood eosinophils and total IgE serum levels and these variables were negatively correlated with nematode FEC. A negative correlation was observed between total IgE serum level and H. contortus burden in both breeds. In conclusion, there was no breed difference regarding O. ovis infestation and in each breed, animals with more nasal bot fly larvae tended to display smaller worm burden. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Paracoccidioidomycosis is a granulomatous pulmonary infection that is generally controlled by chemotherapy. The efficacy of treatment, however, is limited by the status of the host immune response. The inhibition of a Th-2 immunity or the stimulation of Th-1 cytokines generally increases the efficacy of antifungal drugs.(1) This has been achieved by immunization with an internal peptide of the major diagnostic antigen gp43 of Paracoccidioides brasiliensis. Peptide 10 (QTLIAIHTLAIRYAN) elicits an IFN-gamma rich Th-1 immune response that protects against experimental intratracheal infection by this fungus. The combination of chemotherapy with P10 immunization showed additive protective effect even after 30 d of infection or in anergic mice, rendering in general, increased production of IL-12 and IFN-gamma and reduction of IL-4 and IL-10. Immunotherapy with P10 even in the absence of simultaneous chemotherapy has been effective using various protocols, adjuvants, nanoparticles, P10-primed dendritic cells, and especially a combination of plasmids encoding the P10 minigene and IL-12. Gene therapy, in a long-term infection protocol succeeded in the virtual elimination of the fungus, preserving the lung structure, free from immunopathological side effects.
Resumo:
Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the laboratory, Amblyomma cajennense (Acari: Ixodidae) (Fabricius) larvae, nymphs and adults were exposed to Rickettsia rickettsii by feeding on needle-inoculated animals, and thereafter reared on uninfected guinea pigs or rabbits. Regardless of the tick stage that acquired the infection, subsequent tick stages were shown to be infected (confirming transstadial and transovarial transmissions) and were able to transmit R. rickettsii to uninfected animals, as demonstrated by serological and molecular analyses. However, the larval, nymphal and adult stages of A. cajennense were shown to be partially refractory to R. rickettsii infection, as in all cases, only part of the ticks became infected by this agent, after being exposed to rickettsemic animals. In addition, less than 50% of the infected engorged females transmitted rickettsiae transovarially, and when they did so, only part of the offspring became infected, indicating that vertical transmission alone is not enough to maintain R. rickettsii in A. cajennense for multiple generations. Finally, the R. rickettsii-infected tick groups had lower reproductive performance than the uninfected control group. Our results indicate that A. cajennense have a low efficiency to maintain R. rickettsii for successive generations, as R. rickettsii-infection rates should decline drastically throughout the successive tick generations.
Resumo:
Santos M.B., Martini M.C., Ferreira H.L., Silva L.H.A., Fellipe P.A., Spilki F.R. & Arns C.W. 2012. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy. Pesquisa Veterinaria Brasileira 32(12):1257-1262. Laboratorio de Virologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato s/n, Cx. Postal 6109, Campinas, SP 13083-970, Brazil. E-mail: arns@unicamp.br Avian metapneumovirus (aMPV) is a respiratory pathogen associated with the swollen head syndrome (SHS) in chickens. In Brazil, live aMPV vaccines are currently used, but subtypes A and, mainly subtype B (aMPV/A and aMPV/B) are still circulating. This study was conducted to characterize two Brazilian aMPV isolates (A and B subtypes) of chicken origin. A challenge trial to explore the replication ability of the Brazilian subtypes A and B in chickens was performed. Subsequently, virological protection provided from an aMPV/B vaccine against the same isolates was analyzed. Upon challenge experiment, it was shown by virus isolation and real time PCR that aMPV/B could be detected longer and in higher amounts than aMPV/A. For the protection study, 18 one-day-old chicks were vaccinated and challenged at 21 days of age. Using virus isolation and real time PCR, no aMPV/A was detected in the vaccinated chickens, whereas one vaccinated chicken challenged with the aMPV/B isolate was positive. The results showed that aMPV/B vaccine provided a complete heterologous virological protection, although homologous protection was not complete in one chicken. Although only one aMPV/B positive chicken was detected after homologous vaccination, replication in vaccinated animals might allow the emergence of escape mutants.
Resumo:
In this study, transplacental transmission of Neospora caninum in bitches at different stages of pregnancy was evaluated. Three bitches were inoculated in the 3rd week and three in the 6th week of gestation with 10(8) tachyzoites of N. caninum (Nc-1 strain). All the infected bitches and at least one of their offspring presented anti-N. caninum antibodies according to the indirect fluorescent antibody test (IFAT > 400). The pups and their mothers were sacrificed and tissues from the central nervous system (CNS), popliteal lymph nodes, skeletal muscle, brain, lungs, heart and liver were analyzed for the presence of N. caninum using the nested polymerase chain reaction (nested PCR), restriction fragment length polymorphism (RFLP) and immunohistochemistry (IHC). The parasite was found in the pups in lymph node, CNS, heart and liver tissues using nested PCR. There was no difference in perinatal mortality between the offspring from bitches infected in the 3rd week of gestation (60%) and in the 6th week (53.8%).
Resumo:
Rangelia vitalii is a protozoon that causes diseases in dogs, and anemia is the most common laboratory finding. However, few studies on the biochemical changes in dogs infected with this protozoon exist. Thus, this study aimed to investigate the biochemical changes in dogs experimentally infected with R. vitalii, during the acute phase of the infection. For this study, 12 female dogs (aged 6-12 months and weighing between 4 and 7 kg) were used, divided in two groups. Group A was composed of healthy dogs (n = 5); and group B consisted of infected animals (n = 7). Blood samples were collected on days 0, 10, 20 and 30 after infection, using tubes without anticoagulant to obtain serum and analyze the biochemical parameters. An increase in alanine aminotransferase (ALT) on day 20 (P < 0.05) was observed. Also, increased creatine kinase (CK) and aspartate aminotransferase (AST) levels were observed throughout the experimental period (P < 0.05). No changes in the serum gamma-glutamyltransferase, urea and creatinine levels were observed. Thus, is possible to conclude that experimental infection with R. vitalii in dogs causes changes to the biochemical profile, with increased ALT, AST and CK enzyme levels.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
Melatonin has been reported to play a fundamental role in T-cell immunoregulation. Control of Trypanosome cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. The aim of this work was to evaluate the influence of exogenous melatonin treatment and the influences exerted by sexual hormones during the acute phase of the experimental Chagas' disease in rats. With melatonin treatment, orchiectomized animals (CMOR and IMOR) displayed the highest concentrations of IFN-gamma and TNF-alpha. On the 7th day post-infection, untreated and treated orchiectomized animals (IOR and IMOR) showed an enhanced number of peritoneal macrophages. Nitric oxide levels were also increased in untreated and treated orchiectomized (IOR and IMOR) when compared to the other groups, with or without LPS. Our data suggest that melatonin therapy associated with orchiectomy induced a stimulating effect on the immune response to the parasite. (c) 2012 Published by Elsevier Ltd.
Resumo:
Schistosoma mansoni synthesizes glycoconjugates which interact with galectin-3, eliciting an intense humoral immune response. Moreover, it was demonstrated that galectin-3 regulates B cell differentiation into plasma cells. Splenomegaly is a hallmark event characterized by polyclonal B cell activation and enhancement of antibody production. Here, we investigated whether galectin-3 interferes with spleen organization and B cell compartment during chronic schistosomiasis, using wild type (WT) and galectin-3(-/-) mice. In chronically-infected galectin-3(-/-) mice the histological architecture of the spleen, including white and red pulps, was disturbed with heterogeneous lymphoid follicles, an increased number of plasma cells (CD19(-)B220(-/low)CD138(+)) and a reduced number of macrophages (CD19(-)B220(-)Mac-1(+)CD138(-)) and B lymphocytes (CD19(+)B220(+/high)CD138(-)), compared with the WT infected mice. In the absence of galectin-3 there was an increase of annexin-V+PI- cells and a major presence of apoptotic cells in spleen compared with WT infected mice. In spleen of WT infected mice galectin-3 was largely expressed in lymphoid follicles and extrafollicular sites. Thus, we propose that galectin-3 plays a role in splenic architecture, controlling distinct events such as apoptosis, macrophage activity, B cell differentiation and plasmacytogenesis in the course of S. mansoni infection.
Resumo:
Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.
Resumo:
Aim This study aimed to investigate whether chronic antigen-induced arthritis (AIA) influences infection-induced periodontitis (PD) in mice and whether PD modifies the clinical course of AIA. The contribution of anti-TNF-a therapy was also evaluated. Materials and methods The PD was induced in C57BL/6 mice by oral infection with Aggregatibacter actinomycetemcomitans. AIA was induced after infection. Anti-TNF-a and chlorhexidine therapies were used to investigate the role of TNF-a and oral infection on PD and AIA interaction. Maxillae, knee joints, lymph nodes and serum samples were used for histomorphometric, immunoenzymatic and/or real time-PCR analyses. Results Antigen-induced arthritis exacerbated alveolar bone loss triggered by PD infection. In contrast, PD did not influence AIA in the evaluated time-points. PD exacerbation was associated with enhanced production of IFN-? in maxillae and expression of the Th1 transcription factor tBET in submandibular lymph nodes. Increased serum levels of IL-6 and C-reactive protein were also detected. Anti-TNF-a and antiseptic therapies prevented the development and exacerbation of infectious-PD. Anti-TNF-a therapy also resulted in reduced expression of IFN-?, TNF-a and IL-17 in maxillae. Conclusions Altogether, the current results indicate that the exacerbation of infection-induced PD by arthritis is associated with an alteration in lymphocyte polarization pattern and increased systemic immunoreactivity. This process was ameliorated by anti-TNF-a and antiseptic therapies.
Resumo:
Objective: Develop a model that allowed the study of bone regeneration in infection conditions. Method: A 15 mm defect was surgically created in the rabbit ulna and inoculated with 5x10(8) colony-forming units (CFU) of S. aureus. Surgical debridement was performed two weeks after and systemic gentamicin was administered for four weeks. Animals were followed up to 12 weeks to evaluate infection control and bone regeneration. Result: Bone regeneration was inferior to 25% of the defect in radiological and histological analysis. Conclusion: Infected bone defect of 15 mm in the rabbit ulna was unable to achieve full regeneration without further treatment. Level of Evidence V, Experimental Study.
Resumo:
Chronic Chagas cardiomyopathy evolves over a long period of time after initial infection by Trypanosoma cruzi. Similarly, a cardiomyopathy appears later in life in muscular dystrophies. This study tested the hypothesis that dystrophin levels are decreased in the early stage of T cruzi-infected mice that precedes the later development of a cardiomyopathy. CD1 mice were infected with T cruzi (Brazil strain), killed at 30 and 100 days post infection (dpi), and the intensity of inflammation, percentage of interstitial fibrosis, and dystrophin levels evaluated. Echocardiography and magnetic resonance imaging data were evaluated from 15 to 100 dpi. At 30 dpi an intense acute myocarditis with ruptured or intact intracellular parasite nests was observed. At 100 dpi a mild chronic fibrosing myocarditis was detected without parasites in the myocardium. Dystrophin was focally reduced or completely lost in cardiomyocytes at 30 dpi, with the reduction maintained up to 100 dpi. Concurrently, ejection fraction was reduced and the right ventricle was dilated. These findings support the hypothesis that the initial parasitic infection-induced myocardial dystrophin reduction/loss, maintained over time, might be essential to the late development of a cardiomyopathy in mice. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.