13 resultados para BINUCLEAR PALLADIUM

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The add protection effect promoted by traces of PdCl2 in [Ni(dmgH)(2)] spot tests was elucidated from confocal Raman microscopy imaging, which revealed the formation of protecting layers of [Pd(dmgH)(2)] closing the extremities of the [Ni(dmgH)(2)] filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of nitrate on palladium-modified platinum single-crystal electrodes has been investigated both voltammetrically and spectroscopically in acidic media (pH = 1). Results obtained in H2O and D2O solvents are compared for the three crystallographic orientations. FTIR and differential electrochemical mass spectrometry (DEMS) results clearly indicate that the isotopic substitution of the solvent has a large effect in the mechanism of the reaction, changing the nature of the detected products. For Pt(111)/Pd and Pt(100)/Pd, N2O is detected as the main product of nitrate reduction when D2O is used as solvent, while no N2O is detected when the reaction is performed in H2O. For Pt(110)/Pd, N2O is detected in both solvents, although the use of D2O clearly favours the preferential formation of this product. The magnitude of voltammetric currents is also affected by the nature of the solvent. This has been analysed considering, in addition to the different product distribution, the existence of different transport numbers and optical constants of the solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organometallic compound [Pd(C-bzan)(SCN)(dppp)] {bzan = N-benzylideneaniline, dppp = 1,3-bis(diphenylphosphino)propane} was synthesized and characterized by elemental analyses, infrared and H-1 and P-31(H-1) NMR spectroscopies. The crystal and molecular structures of the title complex were determined by single-crystal X-ray diffraction techniques. In vitro antimycobacterial evaluation demonstrated that the compound [Pd(C-bzan)(SCN)(dppp)] displayed a MIC of 5.15 mu M, which is superior than those values found for some commonly used anti-TB drugs and other Pd(II) complexes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale- up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a cylinder is connected to an abutment it is expected that abutment and cylinder will be subjected to compression forces throughout their periphery because of the clamping force exerted by the screw. The deformation resultant of this compression should be measurable and uniform along the periphery of the abutment. Considering that multiple retainers connected to each other can affect the fit of a framework, as well as the use of different alloys, it is expected that the abutments will present different levels of deformation as a result of framework connection. The aim of this study was to evaluate the deformation of implant abutments after frameworks, cast either in cobalt-chromium (CoCr) or silver-palladium (AgPd) alloys, were connected. Samples (n = 5) simulating a typical mandibular cantilevered implant-supported prosthesis framework were fabricated in cobalt-chromium and silver-palladium alloys and screwed onto standard abutments positioned on a master-cast containing 5 implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation as the retention screws were tightened. A combination of compressive and tensile forces was observed on the abutments for both CoCr and AgPd frameworks. There was no evidence of significant differences in median abutment deformation levels for 9 of the 10 abutment aspects. Visually well-fit frameworks do not necessarily transmit load uniformly to abutments. The use of CoCr alloy for implant-supported prostheses frameworks may be as clinically acceptable as AgPd alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)(4)N](2)]Cu(C2O4)(2)] center dot H2O}(n) (1) [(CH3)(4)N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(H) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1)cm(-1), the Hamiltonian being defined as H = -J Sigma nm S-i . S-j]. This value is analyzed and discussed in the light of available magnetostructural data for oxalate-bridged copper(H) complexes with the same out-of-plane exchange pathway. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deutsche Forschungsgemeinschaft [SFB 840]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu-2(Fasp)(4)(MeCN)(2)] center dot 2MeCN (1), [Cu-2(Clasp)(4)(MeCN)(2)]center dot 2MeCN (2), [Cu-2(Brasp)(4) (MeCn)(2)] center dot 2MeCn (3), {[Cu-2(Fasp)(4)(Pyrz)] center dot 2MeCN}(n) (4) {[Cu-2(Clasp)(4)(Pyrz)] center dot 2MeCN}(n) (5), [Cu-2(Brasp)(4)(Pyrz)](n) (6), [Cu-2(Clasp)(4)(4,4'-Bipy)](n) (7), and [Cu-2(Brasp)(4)(4,4'-Bipy)](n) (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4'-Bipy: 4,4'-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).