131 resultados para Physics, Applied


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the analog performance of n-type triple-gate MuGFETs with high-k dielectrics and TiN gate material fabricated in 45 degrees rotated SOI substrates comparing their performance with standard MuGFETs fabricated without substrate rotation. Different fin widths are studied for temperatures ranging from 250 K up to 400 K. The results of transconductance, output conductance, transconductance over drain current ratio, intrinsic voltage gain and unit-gain frequency are studied. It is observed that the substrate rotation improves the carrier mobility of narrow MuGFETs at any temperature because of the changing in the conduction plane at the sidewalls from (1 1 0) to (1 0 0). For lower temperatures, the improvement of the carrier mobility of rotated MuGFETs is more noticeable as well as the rate of mobility improvement with the temperature decrease is larger. The output conductance is weakly affected by the substrate rotation. Although this improvement in the transconductance of rotated MuGFETs is negligibly transferred to the intrinsic voltage gain, the unity-gain frequency of rotated device is improved due to the larger carrier mobility in the entire range of temperatures studied. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the temperature impact on the off-state current components is analyzed through numerical simulation and experimentally. First of all, the band-to-band tunneling is studied by varying the underlap in the channel/drain junction, leading to an analysis of the different off-state current components. For pTFET devices, the best behavior for off-state current was obtained for higher values of underlap (reduced BTBT) and at low temperatures (reduced SRH and TAT). At high temperature, an unexpected off-state current occurred due to the thermal leakage current through the drain/channel junction. Besides, these devices presented a good performance when considering the drain current as a function of the drain voltage, making them suitable for analog applications. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies of niobium after electrochemical polishing EP in sulfuric-methanesulfonic acid mixture were performed. The NbOx/Nb surface was studied by SEM/EDX and XPS methods to find out the chemical composition of the oxygen-induced structures. Specifically the XPS results obtained after EP treatment indicate prevailing part of oxygen with niobium oxides on the sample surface. In order to correctly interpret these structures the photoelectron spectra of main niobium oxides were analyzed, and the spectra of internal Nb 3d and O 1s electronic states and valence band spectra were measured for them. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photodithazine (PDZ) is an N-methyl-D-glucosamine derivative of chlorine e6 that is water soluble and has an intense absorption in the range of 650-680 nm. PDZ photobleaching and photoproduct formation were induced by illumination with laser at two wavelengths: 514 nm (ion argon laser) as well as in 630 nm (dye laser). The time constants of PDZ photobleaching were: 18 min for 630 nm irradiation and 50 min for 514 nm irradiation, suggesting that degradation after irradiation with red light is faster than with green light. Photoproducts formation was evidenced by the appearance of a new absorption band at 668 nm with slight broaden of the Soret band, suggesting that there was no break of the macrocycle. The cytotoxicity of the photodegradated PDZ was investigated and showed to be lower in the dark and higher than non irradiated PDZ. These results may have important clinical implications for PDT such as the possibility to use the previously irradiated PDZ just before clinical application in order to get increased efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a metaheuristic algorithm inspired in evolutionary computation and swarm intelligence concepts and fundamentals of echolocation of micro bats. The aim is to optimize the mono and multiobjective optimization problems related to the brushless DC wheel motor problems, which has 5 design parameters and 6 constraints for the mono-objective problem and 2 objectives, 5 design parameters, and 5 constraints for multiobjective version. Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this newly introduced technique to high nonlinear problems in electromagnetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biogeography is the science that studies the geographical distribution and the migration of species in an ecosystem. Biogeography-based optimization (BBO) is a recently developed global optimization algorithm as a generalization of biogeography to evolutionary algorithm and has shown its ability to solve complex optimization problems. BBO employs a migration operator to share information between the problem solutions. The problem solutions are identified as habitat, and the sharing of features is called migration. In this paper, a multiobjective BBO, combined with a predator-prey (PPBBO) approach, is proposed and validated in the constrained design of a brushless dc wheel motor. The results demonstrated that the proposed PPBBO approach converged to promising solutions in terms of quality and dominance when compared with the classical BBO in a multiobjective version.