49 resultados para Chemistry, Medicinal
Resumo:
Two new peptidic proteasome inhibitors were isolated as trace components from a Curacao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived a,beta-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the beta 5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.
Resumo:
Chemical investigation of the n-hexane and EtOAc fractions of the ethanolic extract from Styrax pohlii (Styracaceae) aerial parts resulted in the isolation of the benzofuran nor-neolignan derivatives egonol (1), homoegonol (2), homoegonol gentiobioside (3), homoegonol glucoside (4) and egonol gentiobioside (5). This is the first report of compounds 1-5 in S. pohlii. Compounds 1-5, the acetyl derivatives 1a and 2a, the ethanolic extract (EE), the n-hexane fraction (HF) and EtOAc fraction (EF) were tested for their inhibitory activities against COX-1 and COX-2. The results showed that EE, HF, EF and compounds 1-5 and 1 a-2 a shown weak to moderate inhibition of COX-1 and COX-2. Among the assayed nor-neolignans, 4 gave a COX-1 inhibition of 35.7% at 30 mu M. Compound 5 displayed a COX-2 inhibition of 19.7% at 30 mu M.
Resumo:
The present study reports the identification of two new staurosporine derivatives, 2-hydroxy-7-oxostaurosporine (1) and 3-hydroxy-7-oxostaurosporine (2), obtained from mid-polar fractions of an aqueous methanol extract of the tunicate Eudistoma vannamei, endemic to the northeast coast of Brazil. The mixture of 1 and 2 displayed IC50 values in the nM range and was up to 14 times more cytotoxic than staurosporine across a panel of tumor cell lines, as evaluated using the MTT assay.
Resumo:
This study evaluated the antioxidant activity of five resveratrol analogs by relating the activity of the molecule with its chemical structure. The five resveratrol analogs were synthesized and the antioxidant activity was evaluated using the DPPH method. The resveratrol was used as the reference standard. A descriptive statistical analysis and ANOVA followed by the Tukey test, with the aid of software. The antioxidant activity of resveratrol analogs was considered statistically different, with the analog A which showed activity superior to the others. The five analogs presented lower antioxidant activity than the reference standard (p <0.001). According to the findings, hydroxylation was the molecular modification that gave the best evaluated antioxidant activity result. Resveratrol analogs may have an important antioxidative activity, but with the one with the higher IC50 was presented by the natural compound.
Resumo:
In this study, the CH2Cl2 extract from leaves of Piper chimonantifolium was subjected to several chromatographic separation procedures to afford one chromene (gaudichaudianic acid) as a major compound as well as two flavonoids (dihydrooroxylin and pinocembrin) and three steroids (sitosterol, sitosteryl palmitate and stigmasterol). The structures of all determined compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR, as well as their optical properties. This article describes the first phytochemical study of the leaves of P. chimonantifolium and an evaluation of the antifungal activity of its major compounds.
Resumo:
Peroxisome-proliferator-activated receptors are a class of nuclear receptors with three subtypes: a, ? and d. Their main function is regulating gene transcription related to lipid and carbohydrate metabolism. Currently, there are no peroxisome-proliferator-activated receptors d drugs being marketed. In this work, we studied a data set of 70 compounds with a and d activity. Three partial least square models were created, and molecular docking studies were performed to understand the main reasons for peroxisome-proliferator-activated receptors d selectivity. The obtained results showed that some molecular descriptors (log P, hydration energy, steric and polar properties) are related to the main interactions that can direct ligands to a particular peroxisome-proliferator-activated receptors subtype.
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
Twenty-three naphthoimidazoles and six naphthoxazoles were synthesised and evaluated against susceptible and rifampicin- and isoniazid-resistant strains of Mycobacterium tuberculosis. Among all the compounds evaluated, fourteen presented MIC values in the range of 0.78 to 6.25 mu g/mL against susceptible and resistant strains of M. tuberculosis, Five structures were solved by X-ray crystallographic analysis. These substances are promising antimycobacterial prototypes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ethnopharmacological relevance: The pharmacological activity of geopropolis collected by stingless bees (important and threatened pollinators), a product widely used in folk medicine by several communities in Brazil, especially in the Northeast Region, needs to be studied. Objective: The aim of this study was to evaluate the antinociceptive activity of Melipona scutellaris geopropolis (stingless bee) using different models of nociception. Material and methods: The antinociceptive activity of the ethanolic extract of geopropolis (EEGP) and fractions was evaluated using writhing induced by acetic acid, formalin test, carrageenan-induced hypernociception, and quantification of IL-1 beta and TNF-alpha. The chemical composition was assessed by quantification of total flavonoids and phenolic compounds. Results: EEGP and its hexane and aqueous fractions showed antinociceptive activity. Both EEGP and its aqueous fraction presented activity in the mechanical inflammatory hypernociception induced by the carrageenan model, an effect mediated by the inhibition of IL-1 beta and TNF-alpha. The chemical composition of EEGP and its hexane and aqueous fractions showed a significant presence of phenolic compounds and absence of flavonoids. Conclusion: Our data indicate that geopropolis is a natural source of bioactive substances with promising antinociceptive activity. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
N-4-Phenyl 2-acetylpyridine thiosemicarbazone (H2Ac4Ph; N-(phenyl)-2-(1-(pyridin-2-yl)ethylidene) hydrazinecarbothioamide) and its N-4-ortho-, -meta- and -para-fluorophenyl (H2Ac4oFPh, H2Ac4mFPh, H2Ac4pFPh), N-4-ortho-, -meta- and -para-chlorophenyl (H2Ac4oClPh, H2Ac4mClPh, H2Ac4pClPh), N-4-ortho-, -meta- and -para-iodophenyl (H2Ac4oIPh, H2Ac4mIPh, H2Ac4pIPh) and N-4-ortho-, -meta- and -para-nitrophenyl (H2Ac4oNO(2)Ph, H2Ac4mNO(2)Ph, H2Ac4pNO(2)Ph) derivatives were assayed for their cytotoxicity against human malignant breast (MCF-7) and glioma (T98G and U87) cells. The compounds were highly cytotoxic against the three cell lineages (IC50: MCF-7, 52-0.16 nM; T98G, 140-1.0 nM; U87, 160-1.4 nM). All tested thiosemicarbazones were more cytotoxic than etoposide and did not present any haemolytic activity at up to 10(-5) M. The compounds were able to induce programmed cell death. H2Ac4pClPh partially inhibited tubulin assembly at high concentrations and induced cellular microtubule disorganization. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A series of 3-(triazolyl)-coumarins were synthesized and tested as anti-inflammatory agents. It was possible to infer that these compounds do not alter the interaction of LPS with TLR-4 or TLR-2, as the intracellular pathways involved in the TNF-alpha secretion and COX-2 activity were not affected. Nevertheless, the compounds inhibited iNOS-derived NO production, without affecting the eNOS activity. The outcome of the docking studies showed that it pi center dot center dot center dot pi interactions with the heme group are important for the iNOS inhibition, thus making compound 3c a promising lead. Moreover, the efficacy of this compound was visualized by the reduced number of neutrophils in the LPS-inflamed subcutaneous tissue. Together, biological and docking data show that triazolyl-substituted coumarins, that can act on iNOS, are a good scaffold to be explored. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Hydroethanolic extracts of C. langsdorffii leaves have therapeutic potential. This work reports a validated chromatographic method for the quantification of polar compounds in the hydroethanolic extract of C. langsdorffii leaves. A reliable HPLC method was developed using two monolithic columns linked in series (100 x 4.6 mm - C-18), with nonlinear gradient elution, and UV detection set at 257 nm. A procedure for the extraction of flavonols was also developed, which involved the use of 70% aqueous ethanol and the addition of benzophenone as the internal standard. The developed method led to a good detection response as the values for linearity were between 10.3 and 1000 mu g/mL, and those for recovery between 84.2 and 111.1%. The detection limit ranged from 0.02 to 1.70 mu g/mL and the quantitation limit from 0.07 to 5.1 mu g/mL, with a maximum RSD of 5.24%. Five compounds, rutin, quercetin-3-O-alpha-L-rhamnopyranoside, kaempferol-3-O-alpha-L-rhamnopyranoside, quercetin and kaempferol, were quantified. This method could, therefore, be used for the quality control of hydroethanolic extracts of Copaifera leaves and their cosmetic and pharmaceutical products.
Resumo:
p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-alpha production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. (c) 2012 Elsevier Masson SAS. All rights reserved.