21 resultados para magnetic properties of nanostructures
Resumo:
This communication is a report of our initial research to obtain iron tungstate (FeWO4) nanocrystals by the microwave-hydrothermal method at 170 degrees C for 45 min. X-ray diffraction patterns showed that the FeWO4 nanocrystals prepared with polyethylene glycol-200 have a partial preferential orientation in the (011) plane in relation to other nanocrystals prepared with sodium bis(2-ethylhexyl) sulfosuccinate and water. Rietveld refinement data indicates that all nanocrystals are monophasic with wolframite-type monoclinic structures and exhibit different distortions on octahedral [FeO6]/[WO6] clusters. High resolution transmission electron microcopy revealed an oriented attachment mechanism for the growth of aggregated FeWO4 nanocrystals. Finally, we observed that the photoluminescence properties of these nanocrystals are affected by partial preferential orientation in the (011) plane and distortions on [FeO6]/[WO6] clusters.
Resumo:
There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.
Resumo:
Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu-2(Fasp)(4)(MeCN)(2)] center dot 2MeCN (1), [Cu-2(Clasp)(4)(MeCN)(2)]center dot 2MeCN (2), [Cu-2(Brasp)(4) (MeCn)(2)] center dot 2MeCn (3), {[Cu-2(Fasp)(4)(Pyrz)] center dot 2MeCN}(n) (4) {[Cu-2(Clasp)(4)(Pyrz)] center dot 2MeCN}(n) (5), [Cu-2(Brasp)(4)(Pyrz)](n) (6), [Cu-2(Clasp)(4)(4,4'-Bipy)](n) (7), and [Cu-2(Brasp)(4)(4,4'-Bipy)](n) (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4'-Bipy: 4,4'-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.
Resumo:
This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.