35 resultados para cancer growth
Resumo:
Objective: Extracellular matrix homeostasis is strictly maintained by a coordinated balance between the expression of metalloproteinases (MMPs) and their regulators. The purpose of this study was to investigate whether MMP-2 and its specific regulators, TIMP-2, MT1-MMP and IL-8, are expressed in a reproducible, specific pattern and if the profiles are related to prognosis and clinical outcome of prostate cancer (PCa). Materials and Methods: MMP-2, TIMP-2, MT1-MMP and IL-8 expression levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) in freshly frozen malignant and benign tissue specimens collected from 79 patients with clinically localized PCa who underwent radical prostatectomies. The control group consisted of 11 patients with benign prostate hyperplasia (BPH). The expression profile of the MMP-2 and its regulators were compared using Gleason scores, pathological stage, pre-operative PSA levels and the final outcome of the PCa. Results: The analysis of 79 specimens of PCa revealed that MMP-2, TIMP-2, MT1-MMP and IL-8 were underexpressed at 60.0%, 72.2%, 62.0% and 65.8%, respectively, in malignant prostatic tissue in relation to BPH samples. Considering the prognostic parameters, we demonstrated that high Gleason score tumors (>= 7) over-expressed MMP-2 (p = 0.048) and TIMP-2 (p = 0.021), compared to low Gleason score tumors (< 7). Conclusion: We have demonstrated that MMP-2 and its regulators are underexpressed in PCa. Alternatively, overexpression of MMP-2 and TIMP-2 was related to higher Gleason score tumors. We postulate that alterations in metalloproteinase expression may be important in the control of tissue homeostasis related to prostate carcinogenesis and tumor behavior.
Resumo:
Background: The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-beta. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of Sao Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results: We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion: We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design: Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study
Resumo:
Objective: By reason of its heterogeneous behavior, it is difficult to determine the prognosis of many prostate cancer cases. Patients with the same clinicopathologic conditions may present varying clinical findings and rates of progression. We determined the role of new genes as potential molecular markers for prostate cancer prognosis. Materials and methods: We performed a microarray analysis of two pools of patients with prostate cancer divided according to their clinicopathologic characteristics. After that, we validated these results by testing the genes with most different expressions between the two pools using the quantitative real time polymerase chain reaction method. We analyzed gene expression in 33 patients with localized prostate cancer according to prostate specific antigen (PSA), pathologic stage, Gleason score, and biochemical recurrence. For statistical analysis we used the Mann-Whitney Test. Results: The microarray analysis revealed that 4,147 genes presented a different expression between the two pools. Among them, 3 genes, TMEFF2, GREB1, and THIL,, were at least 13-times overexpressed, and 1 gene, IGH3, which was at least 5times under-expressed in pool 1 (good prognosis) compared with pool 2 (bad prognosis), were selected for analysis. After the validation tests, GREB1 was significantly more overexpressed among patients with stage T2 compared with T3 (P = 0.020). The expressions of other 3 genes did not present significant differences according to the clinicopatholoOcal variables. Conclusions: Tissue expression of GREB1 is associated with organ-confined prostate cancer and may constitute a gene associated with a favorable prognosis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: There is clinical evidence that very low and safe levels of amplitude-modulated electromagnetic fields administered via an intrabuccal spoon-shaped probe may elicit therapeutic responses in patients with cancer. However, there is no known mechanism explaining the anti-proliferative effect of very low intensity electromagnetic fields. METHODS: To understand the mechanism of this novel approach, hepatocellular carcinoma (HCC) cells were exposed to 27.12 MHz radiofrequency electromagnetic fields using in vitro exposure systems designed to replicate in vivo conditions. Cancer cells were exposed to tumour-specific modulation frequencies, previously identified by biofeedback methods in patients with a diagnosis of cancer. Control modulation frequencies consisted of randomly chosen modulation frequencies within the same 100 Hz-21 kHz range as cancer-specific frequencies. RESULTS: The growth of HCC and breast cancer cells was significantly decreased by HCC-specific and breast cancer-specific modulation frequencies, respectively. However, the same frequencies did not affect proliferation of nonmalignant hepatocytes or breast epithelial cells. Inhibition of HCC cell proliferation was associated with downregulation of XCL2 and PLP2. Furthermore, HCC-specific modulation frequencies disrupted the mitotic spindle. CONCLUSION: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology. British Journal of Cancer (2012) 106, 307-313. doi:10.1038/bjc.2011.523 www.bjcancer.com Published online 1 December 2011 (C) 2012 Cancer Research UK
Resumo:
Purpose Cediranib is a highly potent inhibitor of vascular endothelial growth factor (VEGF) signaling with activity against all three VEGF receptors. HORIZON II [Cediranib (AZD2171, RECENTIN) in Addition to Chemotherapy Versus Placebo Plus Chemotherapy in Patients With Untreated Metastatic Colorectal Cancer] assessed infusional fluorouracil, leucovorin, and oxaliplatin/capecitabine and oxaliplatin (FOLFOX/CAPOX) with or without cediranib in patients with previously untreated metastatic colorectal cancer (mCRC). Patients and Methods Eligible patients were initially randomly assigned 1:1:1 to receive cediranib (20 or 30 mg per day) or placebo plus FOLFOX/CAPOX. In an early analysis of this and two other cediranib studies (HORIZON I [Cediranib Plus FOLFOX6 Versus Bevacizumab Plus FOLFOX6 in Patients With Previously Treated Metastatic Colorectal Cancer] and HORIZON III [Cediranib Plus FOLFOX6 Versus Bevacizumab Plus FOLFOX6 in Patients With Untreated Metastatic Colorectal Cancer]), the 20-mg dose met the predefined criteria for continuation. Subsequent patients were randomly assigned 2: 1 to the cediranib 20 mg or placebo arms. Progression-free survival (PFS) and overall survival (OS) were coprimary end points. Results In all, 860 patients received cediranib 20 mg (n = 502) or placebo (n = 358). The addition of cediranib to FOLFOX/CAPOX resulted in PFS prolongation (hazard ratio [HR], 0.84; 95% CI, 0.73 to 0.98; P = .0121; median PFS, 8.6 months for cediranib v 8.3 months for placebo) but had no impact on OS (HR, 0.94; 95% CI, 0.79 to 1.12; P = .5707; median OS, 19.7 months for cediranib v 18.9 months for placebo). There were no significant differences in the secondary end points of objective response rate, duration of response, or liver resection rate. Median chemotherapy dose-intensity was decreased by approximately 10% in patients treated with cediranib. Adverse events (AEs) associated with cediranib were manageable. Conclusion Addition of cediranib 20 mg to FOLFOX/CAPOX resulted in a modest PFS prolongation, but no significant difference in OS. The cediranib AE profile was consistent with those from previous studies. Because of the lack of improvement in OS, cediranib plus an oxaliplatin-based regimen cannot be recommended as a treatment for patients with mCRC. J Clin Oncol 30:3596-3603. (C) 2012 by American Society of Clinical Oncology
Resumo:
Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011
Resumo:
Objective. The objective of this preliminary study was to evaluate the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and growth factors in keratocystic odontogenic tumors (KOTs). Study Design. The expression of MMPs, TIMPs, growth factors, and the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway were assessed by immunohistochemistry in 15 cases of KOT and 4 cases of calcifying cystic odontogenic tumor (CCOT). Results. KOT samples expressed significantly higher amounts of MMPs, TIMPs, growth factors, epidermal growth factor receptor (EGFR), and ERK compared with CCOT samples, with the exception of MMP-2 and TIMP-1. Conclusions. MMP-9, TIMP-2, EGF and transforming growth factor alpha act together and likely regulate the proliferation and aggressiveness of KOT. ERK-1/2 serves as the transducer of signals generated by these proteins, which signal through the common receptor, EGFR. This process may be related to the increased proliferation and aggressiveness observed in KOT. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:487-496)
Resumo:
Under many circumstances, the host constituents that are found in the tumor microenvironment support a malignancy network and provide the cancer cells with advantages in proliferation, invasiveness and metastasis establishment at remote organs. It is known that Toll like receptors (TLRs) are expressed not only on immune cells but also on cancer cells and it has suggested a deleterious role for TLR3 in inflammatory disease. Hypothesizing that altered IFN gamma signaling may be a key mechanism of immune dysfunction common to cancer as well CXCR4 is overexpressed among breast cancer patients, the mRNA expression of TLR3, CXCR4 and IFN gamma in breast cancer tumor tissues was investigated. No statistically significant differences in the expression of CXCR4 mRNA, IFN gamma and TLR3 between healthy and tumor tissues was observed, however, it was verified a positive correlation between mRNA relative expression of TLR3 and CXCR4 (p < 0.001), and mRNA relative expression of TLR3 was significantly increased in breast cancer tumor tissue when compared to healthy mammary gland tissue among patients expressing high IFN gamma (p = 0.001). Since the tumor microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, it is possible to propose that an overexpression of IFN gamma mRNA due to the pro-inflammatory microenvironment can lead to an up-regulation of CXCR4 mRNA and consequently to an increased TLR3 mRNA expression even among nodal negative patients. In the future, a comprehensive study of TLR3, CXCR4 and IFN gamma axis in primary breast tumors and corresponding healthy tissues will be crucial to further understanding of the cancer network.
Resumo:
Colorectal cancer (CRC) is the most common tumour type in both sexes combined in Western countries. Although screening programmes including the implementation of faecal occult blood test and colonoscopy might be able to reduce mortality by removing precursor lesions and by making diagnosis at an earlier stage, the burden of disease and mortality is still high. Improvement of diagnostic and treatment options increased staging accuracy, functional outcome for early stages as well as survival. Although high quality surgery is still the mainstay of curative treatment, the management of CRC must be a multi-modal approach performed by an experienced multi-disciplinary expert team. Optimal choice of the individual treatment modality according to disease localization and extent, tumour biology and patient factors is able to maintain quality of life, enables long-term survival and even cure in selected patients by a combination of chemotherapy and surgery. Treatment decisions must be based on the available evidence, which has been the basis for this consensus conference-based guideline delivering a clear proposal for diagnostic and treatment measures in each stage of rectal and colon cancer and the individual clinical situations. This ESMO guideline is recommended to be used as the basis for treatment and management decisions.
Resumo:
Background: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-beta 1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods: The mRNA expression levels of TGF-beta isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-beta 1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results: In general, TGF-beta 2, T beta RI and T beta RII are over-expressed in more aggressive cells, except for T beta RI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-beta 1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-beta 1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-beta 1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-beta 1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-beta 1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-beta 1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion: Altogether, our results support that TGF-beta 1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-beta 1 still remains a promising target for breast cancer treatment.
Resumo:
The aim of this study was to compare retrospectively the effect of three different treatments on the healing outcome of bisphosphonate-related osteonecrosis of the jaws (BRONJ) in cancer patients. Twenty-two cancer patients were treated for BRONJ with one of the following protocols: clinical (pharmacological therapy), surgical (pharmacological plus surgical therapy), or PRP plus LPT (pharmacological plus surgical plus platelet rich plasma (PRP) plus laser phototherapy (LPT). The laser treatment was applied with a continuous diode laser (InGaAlP, 660 nm) using punctual and contact mode, 40 mW, spot size 0.042 cm(2), 6 J/cm(2) (6 s) and total energy of 0.24 J per point. The irradiations were performed on the exposed bone and surrounding soft tissue. The analysis of demographic data and risk factors was performed by gathering the following information: age, gender, primary tumor, bisphosphonate (BP) used, duration of BP intake, history of chemotherapy, use of steroids, and medical history of diabetes. The association between the current state of BRONJ (with or without bone exposure) and other qualitative variables was determined using the chi-square or Fisher's exact test. In all tests, the significance level adopted was 5%. Most BRONJ lesions occurred in the mandible (77%) after tooth extraction (55%) and in women (72%). A significantly higher percentage of patients reached the current state of BRONJ without bone exposure (86%) in the PPR plus LPT group than in the pharmacological (0%) and surgical (40%) groups after 1-month follow-up assessment. These results suggest that the association of pharmacological therapy and surgical therapy with PRP plus LPT significantly improves BRONJ healing in oncologic patients. Although prospective studies with larger sample sizes are still needed, this preliminary study may be used to inform a better-designed future study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Abstract Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the tumour cells grown in vitro. At the tissue level, a few cells (probably macrophages) stained positively with antibodies to PAF-R. Conclusions We suggest that PAF-R-dependent pathways are activated during experimental tumour growth, modifying the microenvironment and the phenotype of the tumour macrophages in such a way as to favour tumour growth. Combination therapy with a PAF-R antagonist and a chemotherapeutic drug may represent a new and promising strategy for the treatment of some tumours.
VEGF-C expression in oral cancer by neurotransmitter-induced activation of beta-adrenergic receptors
Resumo:
The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μMof propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p>0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production.