39 resultados para structure characterization
Resumo:
Phosphine ruthenate complexes containing the non-innocent ligands 4-chloro-1,2-phenylenediamine (opda-CI) and 3,3',4,4'-tetraamminebiphenyl (diopda) were synthesized and characterized by means of X-ray diffraction, electrochemistry, P-31{H-1} NMR and electronic spectroscopies. Crystals of cis-[RuCl2 (dppb)(bqdi-CI)] complex were isolated as a mixture of two conformational isomers due to different positions of the chlorine atoms of the o-phenylene ligand in relation to the P1 atom of the phosphine moiety. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The title compound [Ni(C20H15N2OS)(2)] is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, H-1 and C-13 NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two N-benzoyl-N',N'-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually cis to each other. The substance crystallizes triclinic (P-1 space group) with cell dimensions a = 10.7262(9) , b = 12.938(3) , c = 14.2085(12) , alpha = 74.650(4)A degrees, beta = 78.398(4)A degrees, gamma = 68.200(5)A degrees, and two formula units in the unit cell. The structure is very close to the related N-(2-furoyl) Ni complex reported previously.
Resumo:
The arene-ruthenium complex [Ru(eta(6)-C10H14)(dppf)Cl]PF6 (1) was used as a precursor for the syntheses of the [Ru(eta(6)-C10H14)(dppf)Br]PF6 (2), [Ru(eta(6)-C10H14)(dppf)I]PF6 (3). [Ru(eta(6)-C10H14)(dppf)SnF3]PF6 (4) and [Ru(eta(6)-C10H14)(dppf)Cl][SnCl3]center dot 0.45CH(2)Cl(2) (5) complexes by its reactions with KBr, Kl, SnF2 and SnCl2. respectively. All of the compounds were characterized by NMR, IR, Fe-57 and Sn-119-Mossbauer spectroscopy, and cyclic voltammetry. The single-crystal X-ray structure analysis of the [Ru(eta(6)-C10H14)(dppf)Cl] [SnCl3]center dot 0.45CH(2)Cl(2) complex revealed the expected piano-stool geometry. Cyclic voltammograms of the complexes showed only one quasi-reversible electrochemical process, involving the oxidation of Fe(II) and Ru(II) at the same potential, which was confirmed by exhaustive electrolysis experiments. Fe-57-Mossbauer parameters obtained for the complexes (1-5) were fitted with one doublet corresponding to a site of one iron(II). The Sn-119-Mossbauer parameters of the complex (4) indicate that tin is tetra covalent. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.
Resumo:
The title compound, (thiosaccharine disulfide), bis[1,10dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV–Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.
Resumo:
The antimicrobial activity of hemoglobin fragments (hemocidins) has been reported in a variety of models. The cattle tick Rhipicephalus (Boophilus) microplus is a blood sucking arthropod from where the first in vivo-generated hemocidin was characterized (Hb 33-61). In the present work we identified a novel antimicrobial peptide from the midgut of fully engorged R. (B.) microplus females, which comprises the amino acids 98-114 of the alpha subunit of bovine hemoglobin, and was designated Hb 98-114. This peptide was active against several yeast and filamentous fungi, although no activity was detected against bacteria up to 50 mu M of the synthetic peptide. Hb 98-114 was capable of permeabilizing Candida albicans cell membrane and had a fungicidal effect against this yeast. Circulardichroism (CD) and nuclear magnetic resonance (NMR) experiments showed that Hb 98-114 has a random conformation in aqueous solution but switches to an alpha-helical conformation in the presence of sodium dodecyl sulfate (SDS). This alpha helix adopts an amphipathic structure which may be the mechanism of cell membrane permeabilization. Importantly, Hb 98-114 may play an important role in defending the tick midgut against fungal pathogens and is the first hemocidin with specific antifungal activity to be characterized. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to identify the socioeconomic and demographic characteristics of children and adolescents who study and work outside their home. This non-experimental, correlational, cross-sectional study was performed using questionnaires applied to primary education students, enrolled in public schools in Ribeirao Preto (Brazil). Two schools were selected through a draw. Data analysis was performed using Statistical Package for Social Sciences, version 14.0. Of the 133 students who answered the questionnaire, 36 (27.7%) reported working outside their home, 20.6% were between 11 and 13 years of age, and 66.7% were male (p=0.000) and had started working early to help with the family income (p=0.003). The salary they received helped comprise the family income, and it was found that as the family income increased, the need for the youngsters to work was reduced. It was found that many factors contribute to these subjects' early start at work, including family size, structure and poverty.
Resumo:
In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In1-xMnxAs quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In1-xMnxAs QDs were grown on top of a non-magnetic In0.4Ga0.6As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In1-xMnxAs QDs. For particular conditions, such as surface morphology and growth conditions, the In1-xMnxAs QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2K. We found that the magnetic moment axis changes from [110] in In1-xMnxAs over GaAs to [1-10] for the ordered In1-xMnxAs grown over GaAs template. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745904]
Resumo:
The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Resumo:
Vanadium/titanium mixed oxide films were produced using the sol-gel route. The structural investigation revealed that increased TiO2 molar ratio in the mixed oxide disturbs the V2O5 crystalline structure and makes it amorphous. This blocks the TiO2 phase transformation, so TiO2 stabilizes in the anatase phase. In addition the surface of the sample always presents larger amounts of TiO2 than expected, revealing a concentration gradient along the growth direction. For increased TiO2 molar ratios the roughness of the surface is reduced. Ion sensors were fabricated using the extended gate field effect transistor configuration. The obtained sensitivities varied in the range of 58 mV/pH down to 15 mV/pH according to the composition and morphology of the surface of the samples. Low TiO2 amounts presented better sensing properties that might be related to the cracked and inhomogeneous surfaces. Rising the TiO2 quantity in the films produces homogeneous surfaces but diminishes their sensitivities. Thus, the present paper reveals that the compositional and structural aspects change the surface morphology and electrical properties accounting for the final ion sensing properties of the V2O5/TiO2 films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053206jes] All rights reserved.