22 resultados para Organometallic Compounds -- chemistry
Resumo:
The organometallic compound [Pd(C-bzan)(SCN)(dppp)] {bzan = N-benzylideneaniline, dppp = 1,3-bis(diphenylphosphino)propane} was synthesized and characterized by elemental analyses, infrared and H-1 and P-31(H-1) NMR spectroscopies. The crystal and molecular structures of the title complex were determined by single-crystal X-ray diffraction techniques. In vitro antimycobacterial evaluation demonstrated that the compound [Pd(C-bzan)(SCN)(dppp)] displayed a MIC of 5.15 mu M, which is superior than those values found for some commonly used anti-TB drugs and other Pd(II) complexes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Five 2-hydroxy-3-substituted-aminomethyl naphthoquinones, nine 1,2,3-triazolic para-naphthoquinones, five nor-beta-lapachone-based 1,2,3-triazoles, and several other naphthoquinonoid compounds were synthesized and evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease, continuing our screening program for new trypanocidal compounds. Among all the substances, 16-18, 23, 25-29 and 30-33 were herein described for the first time and fifteen substances were identified as more potent than the standard drug benznidazole, with IC50/24 h values in the range of 10.9-101.5 mu M. Compounds 14 and 19 with Selectivity Index of 18.9 and 6.1 are important structures for further studies. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Extracts from Baccharis dracunculifolia leaves were obtained using the following solvents: supercritical carbon dioxide (SC-CO2), ethanol and methanol. Supercritical extraction was carried out at temperatures of 40, 50 and 60 degrees C and pressures of 20, 30 and 40 MPa. Four phenolic compounds were analysed in the extracts by high-performance liquid chromatography: 3,5-diprenyl-4-hydroxycinnamic acid (DHCA or artepillin C); 3-prenyl-4-hydroxycinnamic acid (PHCA); 4-hydroxycinnamic acid (p-coumaric acid) and 4-methoxy-3,5,7-trihydroxyflavone (kaempferide). The global extraction yields (X-0) obtained by the conventional methods with ethanol and methanol were higher than those obtained by SC-CO2. However on analysing the components of interest extracted at 60 degrees C and 40 MPa, the extraction yields of kaempferide, DHCA and PHCA were 156%, 98% and 64% higher, respectively, than in the ethanolic extracts. Only the p-coumaric acid extraction yield was better when extracted using the conventional method. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of chiral-centered selenium compounds is presented. Enantioselective oxidations of these organoselenium compounds were performed using a wide range of biocatalysts, including Baeyer-Villiger monooxygenases, oxidoreductases-containing Aspergillus terreus and lipase (Cal-B) in the presence of oxidants. Finally, efficient synthesis of enantiopure organoselenium compounds using a kinetic resolution approach mediated by Cal-B was achieved. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Tropical fruit residues consisting of seeds, peels and residual pulp generated as by-products of fruit processing industry were investigated for bioactive compounds, the in vitro antioxidant capacity as well as alpha-glucosidase and alpha-amylase inhibitory activities. Cyanidin, quercetin, ellagic acid (EA) and proanthocyanidins were found in acerola, jambolan, pitanga and caja-umbu residue powders. Acerola powder had the highest phenolic content (8839.33 mg catechin equivalents (CE)/100 g) and also high-ascorbic acid (AA) concentration (2748.03 mg/100 g), followed by jambolan and pitanga. The greatest 1,1-Diphenyl-2-picrylhydrazyl (DPPH) inhibition was observed for jambolan (436.76 mmol Trolox eq/g) followed by pitanga (206.68 mmol Trolox eq/g) and acerola (192.60 mmol Trolox eq/g), while acerola had the highest ferric reducing antioxidant power (FRAP) assay result (7.87 mmol Trolox eq/g). All fruit powders exhibited enzymatic inhibition against alpha-amylase (IC50 ranging from 3.40 to 49.5 mg CE/mL) and alpha-glucosidase (IC50 ranging from 1.15 to 2.37 mg CE/mL). Therefore, acerola, jambolan and pitanga dried residues are promising natural ingredients for food and nutraceutical manufacturers, due to their rich bioactive compound content.
Resumo:
Lychnophora salicifolia Mart., which occurs in the Brazilian Cerrado in the states of Bahia and Minas Gerais as well as in the southeast of the state of Goias, is the most widely distributed and also the most polymorphic species of the genus. This plant is popularly known to have anti-inflammatory and analgesic activities. In this work, we have studied the variation in terms of polar metabolites of ninety-three Lychnophora salicifolia Mart, specimens collected from different regions of the Brazilian Cerrado. Identification of the constituents of this mixture was carried out by analysis of the UV spectra and MS data after chromatographic separation. Twenty substances were identified, including chlorogenic acid derivatives, a flavonoid C-glucoside, and other sesquiterpenes. The analytical method was validated, and the reliability and credibility of the results was ensured for the purposes of this study. The concentration range required for analysis of content variability within the analyzed group of specimens was covered with appropriate values of limits of detection and quantitation, as well as satisfactory precision and recovery. A quantitative variability was observed among specimens collected from the same location, but on average they were similar from a chemical viewpoint. In relation to the study involving specimens from different locations, there were both qualitative and quantitative differences among plants collected from different regions of Brazil. Statistical analysis revealed that there is a correlation between geographical localization and polar metabolites profile for specimens collected from different locations. This is evidence that the pattern of metabolites concentration depends on the geographical distribution of the specimens. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV.
Resumo:
The synthesis of nickel catalysts for industrial applications is relatively simple; however, nickel oxidation is usually difficult to avoid, which makes it challenging to optimize catalytic activities, metal loadings, and high-temperature activation steps. A robust, oxidation-resistant and very active nickel catalyst was prepared by controlled decomposition of the organometallic precursor [bis(1,5-cyclooctadiene)nickel(0)], Ni(COD)(2), over silica-coated magnetite (Fe3O4@SiO2). The sample is mostly Ni(0), and surface oxidized species formed after exposure to air are easily reduced in situ during hydrogenation of cyclohexene under mild conditions recovering the initial activity. This unique behavior may benefit several other reactions that are likely to proceed via Ni heterogeneous catalysis.
Resumo:
A sensitive electrochemical sensor was successfully developed on multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPc) modified glassy carbon electrode (GC), and used to detect byproducts formed after the electrolysis of benzene. The GC/MWCNT/CoPc electrode was applied in the detection of phenolic compounds using square wave voltammetry (SWV). The proposed sensor exhibited a sequence in the sensitivity of the tested phenols: catechol > hydroquinone > resorcinol > phenol and 1,4-benzoquinone. The detection limits for individual phenols were also calculated: catechol (15.62 mu g L-1), hydroquinone (17.91 mu g L-1), resorcinol (46.12 mu g L-1), phenol (58.83 mu g L-1) and 1,4-benzoquinone (13.75 mu g L-1). The proposed sensor was successfully applied in the determination of the total amount of phenols formed after the benzene oxidation, and the obtained results were in full agreement with those from the HPLC procedure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Inclusion compounds of Al-quercetin and Al-catechin complexes with beta-cyclodextrin (beta CD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPHaEuro cent scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV-visible and NMR measurements in aqueous media.
Resumo:
This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
VIBRATIONAL ANALYSIS OF COORDINATION COMPOUNDS OF NICKEL (II): AN APPROACH TO THE TEACHING OF POINT GROUPS. This paper presents an IR and Raman experiment executed during the teaching of the course "Chemical Bonds" for undergraduated students of Science and Technology and Chemistry at the Federal University of ABC, in order to facilitate and encourage the teaching and learning of group theory. Some key aspects of this theory are also outlined. We believe that student learning was more significant with the introduction of this experiment, because there was an increase in the discussions level and in the performance during evaluations. This work also proposes a multidisciplinary approach to include the use of quantum chemistry tools.
Resumo:
Deutsche Forschungsgemeinschaft [SFB 840]
Resumo:
A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.