255 resultados para strategy session

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS This paper reports on the implementation of a research project that trials an educational strategy implemented over six months of an undergraduate third year nursing curriculum. This project aims to explore the effectiveness of ‘think aloud’ as a strategy for learning clinical reasoning for students in simulated clinical settings. BACKGROUND Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting [1]. Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. For students learning to manage complex clinical situations, teaching approaches are required that make these instinctive cognitive processes explicit and clear [2-5]. In line with professional expectations, nursing students in third year at Queensland University of Technology (QUT) are expected to display clinical reasoning skills in practice. This can be a complex proposition for students in practice situations, particularly as the degree of uncertainty or decision complexity increases [6-7]. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students [4, 8]. This project aims to use the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students are assisted to uncover cognitive approaches that best assist them to make effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection on their practice. MEHODS In semester 2 2011 at QUT, third year nursing students will undertake high fidelity simulation, some for the first time commencing in September of 2011. There will be two cohorts for strategy implementation (group 1= use think aloud as a strategy within the simulation, group 2= not given a specific strategy outside of nursing assessment frameworks) in relation to problem solving patient needs. Students will be briefed about the scenario, given a nursing handover, placed into a simulation group and an observer group, and the facilitator/teacher will run the simulation from a control room, and not have contact (as a ‘teacher’) with students during the simulation. Then debriefing will occur as a whole group outside of the simulation room where the session can be reviewed on screen. The think aloud strategy will be described to students in their pre-simulation briefing and allow for clarification of this strategy at this time. All other aspects of the simulations remain the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). RESULTS Methodology of the project and the challenges of implementation will be the focus of this presentation. This will include ethical considerations in designing the project, recruitment of students and implementation of a voluntary research project within a busy educational curriculum which in third year targets 669 students over two campuses. CONCLUSIONS In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs. References 1. Lasater, K., High-fidelity simulation and the development of clinical judgement: students' experiences. Journal of Nursing Education, 2007. 46(6): p. 269-276. 2. Lapkin, S., et al., Effectiveness of patient simulation manikins in teaching clinical reasoning skills to undergraduate nursing students: a systematic review. Clinical Simulation in Nursing, 2010. 6(6): p. e207-22. 3. Kaddoura, M.P.C.M.S.N.R.N., New Graduate Nurses' Perceptions of the Effects of Clinical Simulation on Their Critical Thinking, Learning, and Confidence. The Journal of Continuing Education in Nursing, 2010. 41(11): p. 506. 4. Banning, M., The think aloud approach as an educational tool to develop and assess clinical reasoning in undergraduate students. Nurse Education Today, 2008. 28: p. 8-14. 5. Porter-O'Grady, T., Profound change:21st century nursing. Nursing Outlook, 2001. 49(4): p. 182-186. 6. Andersson, A.K., M. Omberg, and M. Svedlund, Triage in the emergency department-a qualitative study of the factors which nurses consider when making decisions. Nursing in Critical Care, 2006. 11(3): p. 136-145. 7. O'Neill, E.S., N.M. Dluhy, and C. Chin, Modelling novice clinical reasoning for a computerized decision support system. Journal of Advanced Nursing, 2005. 49(1): p. 68-77. 8. Lee, J.E. and N. Ryan-Wenger, The "Think Aloud" seminar for teaching clinical reasoning: a case study of a child with pharyngitis. J Pediatr Health Care, 1997. 11(3): p. 101-10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theme Paper for Curriculum innovation and enhancement theme AIM: This paper reports on a research project that trialled an educational strategy implemented in an undergraduate nursing curriculum. The project aimed to explore the effectiveness of ‘think aloud’ as a strategy for improving clinical reasoning for students in simulated clinical settings. BACKGROUND: Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting (Lasater, 2007). Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students (Banning, 2008, Lee and Ryan-Wenger, 1997). This project used the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students were assisted to uncover cognitive approaches to assist in making effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection about their practice. MEHODS: In semester 2 2011 at QUT, third year nursing students undertook high fidelity simulation (some for the first time), commencing in September of 2011. There were two cohorts for strategy implementation (group 1= used think aloud as a strategy within the simulation, group 2= no specific strategy outside of nursing assessment frameworks used by all students) in relation to problem solving patient needs. The think aloud strategy was described to students in their pre-simulation briefing and allowed time for clarification of this strategy. All other aspects of the simulations remained the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). Ethics approval has been obtained for this project. RESULTS: Results of a qualitative analysis (in progress- will be completed by March 2012) of student and facilitator reports on students’ ability to meet the learning objectives of solving patient problems using clinical reasoning and experience with the ‘think aloud’ method will be presented. A comparison of clinical reasoning learning outcomes between the two groups will determine the effect on clinical reasoning for students responding to patient problems. CONCLUSIONS: In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Our aim was to evaluate the recovery effects of hydrotherapy after aerobic exercise in cardiovascular, performance and perceived fatigue. Methods A pragmatic controlled repeated measures; single-blind trial was conducted. Thirty-four recreational sportspeople visited a Sport-Centre and were assigned to a Hydrotherapy group (experimental) or rest in a bed (control) after completing a spinning session. Main outcomes measures including blood pressure, heart rate, handgrip strength, vertical jump, self-perceived fatigue, and body temperature were assessed at baseline, immediately post-exercise and post-recovery. The hypothesis of interest was the session*time interaction. Results The analysis revealed significant session*time interactions for diastolic blood pressure (P=0.031), heart rate (P=0.041), self perceived fatigue (P=0.046), and body temperature (P=0.001); but not for vertical jump (P=0.437), handgrip (P=0.845) or systolic blood pressure (P=0.266). Post-hoc analysis revealed that hydrotherapy resulted in recovered heart rate and diastolic blood pressure similar to baseline values after the spinning session. Further, hydrotherapy resulted in decreased self-perceived fatigue after the spinning session. Conclusions Our results support that hydrotherapy is an adequate strategy to facilitate cardiovascular recovers and perceived fatigue, but not strength, after spinning exercise. Trial registration ClinicalTrials.gov Identifier: NCT01765387 Keywords: Hydrotherapy; Heart rate; Fatigue; Strength; Blood pressure; Body temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2013, social networking was the second most popular online activity after internet banking for Australians (ABS, 2014). The popularity and apparent ubiquity of social media is one of the most obvious and compelling arguments for integrating such technologies into higher education. Already, social media impacts a wide range of activities ranging in scope from marketing and communication to teaching and learning in higher education (Hrastinski & Dennen, 2012). Social media presents many exciting possibilities and opportunities for higher education. This session will focus on one staff focussed and one student focussed social media innovation currently underway at QUT. First, it will focus on the actions of QUT’s social media working group. The working group’s aim is to ensure an overarching social media policy for the university is developed and implemented that supports staff in the use of social media across a range of activities. Second, it will discuss the eResponsible and eProfessional Online resources for students project. The focus of this project is to develop a suite of online resources targeted at the devel opment of social media skills for undergraduate students at QUT. These initiatives are complementary and both aim to minimise risk while maximising opportuniti es for the university

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.