234 resultados para arithmetic Fuchsian group

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The proposed formulae and algorithms can save time in suitable point representations. To support our claims, a cost comparison is made with classic scalar multiplication algorithms using previous and current operation counts. Most notably, the best speeds are obtained from Jacobi quartic curves which provide the fastest timings for most scalar multiplication strategies benefiting from the proposed 12M + 5S + 1D point doubling and 7M + 3S + 1D point addition algorithms. Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks which are based on simple power analysis (SPA). Keywords: Efficient elliptic curve arithmetic,unified addition, side channel attack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: