850 resultados para Mathematics knowledge
em Queensland University of Technology - ePrints Archive
Resumo:
This study investigated the classroom environment in an underperforming mathematics classroom. The objectives were: (1) to investigate the classroom environment and identify influences upon it, and (2) to further explore those influences (i.e., teacher knowledge). This was completed using a diachronic case study approach in which data were gathered during lesson observations and coaching sessions. These data were analysed to describe and exemplify the classroom environment, then further described against forms of teacher knowledge. Conjectures regarding the importance of teacher knowledge of content were made which formed a base for developing a model of teacher planning and pedagogy.
Resumo:
The authors have collaboratively used a graphical language to describe their shared knowledge of a small domain of mathematics, which has in turn scaffolded their re-development of a related curriculum for mathematics acceleration. This collaborative use of the graphical language is reported as a simple descriptive case study. This leads to an evaluation of the graphical language’s usefulness as a tool to support the articulation of the structure of mathematics knowledge. In turn, implications are drawn for how the graphical language may be utilised as the detail of the curriculum is further elaborated and communicated to teachers.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
A mathematics classroom is comprised of many mathematicians with varying understanding of mathematics knowledge, including the teacher, students and sometimes researchers. To align with this conceptualisation of knowledge and understanding, the multi-faceted teaching experiment will be introduced as an approach to study all classroom participants’ interactions with the shared knowledge of mathematics. Drawing on the experiences of a large curriculum project, it is claimed that, unlike a multi-tiered teaching experiment, the multi-faceted teaching experiment provides a research framework that allows for the study of mathematicians’ building of knowledge in a classroom without privileging the experience of any one participant.
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents’ funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being. This knowledge is then practised throughout their lives and passed onto the next generation of children. Through adopting a community research approach, funds of knowledge that can be used to validate the community’s identities as knowledgeable people, can also be used as foundations for future learnings for teachers, parents and children in the early years of school. They can be the bridge that joins a community’s funds of knowledge with schools validating that knowledge.
Resumo:
Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.
Resumo:
Prior to entering schooling settings, many children exhibit intuitive knowledge of mathematics and many have mastered basic addition combinations. However, often as a result of formal instruction, some children begin to dislike or fear mathematics. In this study, children at a kindergarten in China took a smiley-face survey to determine how their feelings and beliefs about mathematics were affected throughout their kindergarten years.Results suggest that even children in this study have a better number sense and mathematics achievement, they appear to develop mathematics anxiety in Chinese cultural context.
Resumo:
A literature-based instrument gathered data about 147 final-year preservice teachers’ perceptions of their mentors’ practices related to primary mathematics teaching. Five factors characterized effective mentoring practices in primary mathematics teaching had acceptable Cronbach alphas, that is, Personal Attributes (mean scale score=3.97, SD [standard deviation]=0.81), System Requirements (mean scale score=2.98, SD=0.96), Pedagogical Knowledge (mean scale score=3.61, SD=0.89), Modelling (mean scale score=4.03, SD=0.73), and Feedback (mean scale score=3.80, SD=0.86) were .91, .74, .94, .89, and .86 respectively. Qualitative data (n=44) investigated mentors’ perceptions of mentoring these preservice teachers, including identification of successful mentoring practices and ways to enhance practices.
Resumo:
This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.
Resumo:
The purpose of this study was to identify the pedagogical knowledge relevant to the successful completion of a pie chart item. This purpose was achieved through the identification of the essential fluencies that 12–13-year-olds required for the successful solution of a pie chart item. Fluency relates to ease of solution and is particularly important in mathematics because it impacts on performance. Although the majority of students were successful on this multiple choice item, there was considerable divergence in the strategies they employed. Approximately two-thirds of the students employed efficient multiplicative strategies, which recognised and capitalised on the pie chart as a proportional representation. In contrast, the remaining one-third of students used a less efficient additive strategy that failed to capitalise on the representation of the pie chart. The results of our investigation of students’ performance on the pie chart item during individual interviews revealed that five distinct fluencies were involved in the solution process: conceptual (understanding the question), linguistic (keywords), retrieval (strategy selection), perceptual (orientation of a segment of the pie chart) and graphical (recognising the pie chart as a proportional representation). In addition, some students exhibited mild disfluencies corresponding to the five fluencies identified above. Three major outcomes emerged from the study. First, a model of knowledge of content and students for pie charts was developed. This model can be used to inform instruction about the pie chart and guide strategic support for students. Second, perceptual and graphical fluency were identified as two aspects of the curriculum, which should receive a greater emphasis in the primary years, due to their importance in interpreting pie charts. Finally, a working definition of fluency in mathematics was derived from students’ responses to the pie chart item.