480 resultados para Inductive Power Decoupling

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical Inductive Power Transfer (IPT) systems employ two power conversion stages to generate a high frequency current from low frequency utility supply. This paper proposes a matrix converter based IPT system that facilitates the generation of high frequency current through a single power conversion stage. The proposed matrix converter topology transforms a 3-phase low frequency voltage system to a high frequency single phase voltage which in turn powers a series compensated IPT system. A comprehensive mathematical model is developed to investigate the behavior of the proposed IPT topology. Theoretical results are presented in comparison to simulations, which are performed in Matlab/ Simulink, to demonstrate the applicability of the proposed concept and the validity of the developed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A typical low power IPT system employs an H-Bridge converter with a simple control strategy to generate a high frequency current from DC power supply. This paper proposes a cascaded multilevel converter for bidirectional IPT (BIPT) systems, which is suitable for low to medium power applications as well as for situations such as PV cells where several individual DC sources are to be utilized. A novel modulation strategy is proposed for the multilevel converter with the aim of minimizing switching losses. Series - Series (SS) compensation circuit is adopted for the IPT system and a mathematical model is presented to minimize the coil losses of the system under varying output power. Theoretical results presented in comparison to the simulations to demonstrate the applicability of the proposed concept and the validity of the developed model. The experimental results show the feasibility of the proposed phase shift modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix converter (MC) based bi-directional inductive power transfer (BD-IPT) systems are gaining popularity as an efficient and reliable technique with single stage grid integration as opposed to two stage grid integration of conventional grid connected BD-IPT systems. However MCs are invariably rich in harmonics and thus affect both power quality and power factor on the grid side. This paper proposes a mathematical model through which the grid side harmonics of MC based BD-IPT systems can accurately be estimated. The validity of the proposed mathematical model is verified using simulated results of a 3 kW BD-IPT system and results suggest that the MC based BD-IPT systems have a better power factor with higher power quality over conventional grid connected rectifier based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compared with unidirectional inductive power transfer (UIPT) systems which are suitable for passive loads, bidirectional IPT (BIPT) systems can be used for active loads with power regenerative capability. There are numerous BIPT systems that have been proposed previously to achieve improved performance. However, typical BIPT systems are controlled through modulation of phase-shift of each converter while keeping the relative phase angle between voltages produced by two converters at ± 90 degrees. This paper presents theoretical analysis to show that there is a unique phase shift for each converter at which the inductive coils losses of the system is minimized for a given load. Simulated results of a BIPT system, compensated by CLCL resonant networks, are presented to demonstrate the applicability of the proposed concept and the validity of the mathematical model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis proposes a novel gate drive circuit to improve the switching performance of MOSFET power switches in power electronic converters. The proposed topology exploits the cascode configuration, allowing the minimisation of switching losses in the presence of practical circuit constraints, which enables efficiency and power density improvements. Switching characteristics of the new topology are investigated and key mechanisms that control the switching process are identified. Unique analysis tools and techniques are also developed to demonstrate the application of the cascode gate drive circuit for switching performance optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operation and mode jumps in low-frequency (500 kHz) radio-frequency inductively coupled plasmas are investigated. The discharge is driven by a flat inductive coil which can excite the electrostatic (E) and electromagnetic (H) discharge modes. The power transfer efficiency and mode transition behavior are studied. It is found that the power reflection coefficient as a function of the input power is minimal in the vicinity of the mode transitions and exhibits hysteresis, which is also observed when the operating gas pressure is varied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To overcome the limitations of existing gate drive topologies an improved gate drive concept is proposed to provide fast, controlled switching of power MOSFETs. The proposed topology exploits the cascode configuration with the inclusion of an active gate clamp to ensure that the driven MOSFET may be turned off under all load conditions. Key operating principles and advantages of the proposed gate drive topology are discussed. Characteristic waveforms are investigated via simulation and experimentation for the cascode driver in an inductive switching application at 375V and 10A. Experimental waveforms compared well with simulations with long gate charging delays (including the Miller plateau) being eliminated from the gate voltage waveform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact arrays enable various applications such as antenna beam-forming and multi-input, multi-output (MIMO) schemes on limited-size platforms. The reduced element spacing in compact arrays introduces high levels of mutual coupling which can affect the performance of the adaptive array. This coupling causes a mismatch at the input ports, which disturbs the performance of the individual elements in the array and affects the implementation of beam steering. In this article, a reactive decoupling network for a 3-element monopole array is used to establish port isolation while simultaneously matching input impedance at each port to the system impendence. The integrated decoupling and matching network is incorporated in the ground plane of the monopole array, providing further development scope for beamforming using phase shifters and power splitters in double-layered circuits.