87 resultados para Craven County (N.C.)
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.
Resumo:
Enhancing children's self-concepts is widely accepted as a critical educational outcome of schooling and is postulated as a mediating variable that facilitates the attainment of other desired outcomes such as improved academic achievement. Despite considerable advances in self-concept research, there has been limited progress in devising teacher-administered enhancement interventions. This is unfortunate as teachers are crucial change agents during important developmental periods when self-concept is formed. The primary aim of the present investigation is to build on the promising features of previous self-concept enhancement studies by: (a) combining two exciting research directions developed by Burnett and Craven to develop a potentially powerful cognitive-based intervention; (b) incorporating recent developments in theory and measurement to ensure that the multidimensionality of self-concept is accounted for in the research design; (c) fully investigating the effects of a potentially strong cognitive intervention on reading, mathematics, school and learning self-concepts by using a large sample size and a sophisticated research design; (d) evaluating the effects of the intervention on affective and cognitive subcomponents of reading, mathematics, school and learning self-concepts over time to test for differential effects of the intervention; (e) modifying and extending current procedures to maximise the successful implementation of a teacher-mediated intervention in a naturalistic setting by incorporating sophisticated teacher training as suggested by Hattie (1992) and including an assessment of the efficacy of implementation; and (f) examining the durability of effects associated with the intervention.
Resumo:
A broad range of motorcycle safety programs and systems exist in Australia and New Zealand. These vary from statewide licensing and training systems run by government licensing and transport agencies to safety programs run in small communities and by individual rider groups. While the effectiveness of licensing and training has been reviewed and recommendations for improvement have been developed (e.g. Haworth & Mulvihill, 2005), little is known about many smaller or innovative programs, and their potential to improve motorcycle safety in the ACT.
Resumo:
This ‘Claymation’ and ‘Slowmation’ project incorporated content as well as skill development. The participants – 4 pre-service teachers and 4 secondary school students explored chromosome mapping and DNA replication. Through research, the writing, revising and editing of storyboards, two short videos were produced. Two of the pre-service teachers had prior experience with Claymation, however none of the participants had prior knowledge of chromosome mapping or DNA replication. This paper describes the learnings of the participants in terms of their self generated questions, the need for attention to detail, and argumentation / negotiation skills.
Resumo:
Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53-250 mum sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.