333 resultados para Varying environments
Resumo:
Though stadium style seating in large lecture theatres may suggest otherwise, effective teaching and learning is a not a spectator sport. A challenge in creating effective learning environments in both physical and virtual spaces is to provide optimal opportunity for student engagement in active learning. Queensland University of Technology (QUT) has developed the Open Web Lecture (OWL), a new web-based student response application, which seamlessly integrates a virtual learning environment within the physical learning space. The result is a blended learning experience; a fluid collaboration between academic and students connected to OWL via the University’s Wi-Fi using their own laptop or mobile web device. QUT is currently piloting the OWL application to encourage student engagement. OWL offers opportunities for participants to: • Post comments and questions • Reply to comments • "Like" comments • Poll students and review data • Review archived sessions. Many of these features instinctively appeal to student users of social networking media, yet avail the academic of control within the University network. Student privacy is respected through a system of preserving peer-peer anonymity, a functionality that seeks to address a traditional reluctance to speak up in large classes. The pilot is establishing OWL as an opportunity for engaging students in active learning opportunities by enabling • virtual learning in physical spaces for large group lectures, seminar groups, workshops and conferences • live collaborative technology connecting students and the academic via the wireless network using their own laptop or mobile device • an non- intimidating environment in which to ask questions • promotion of a sense of community • instant feedback • problem based learning. The student and academic response to OWL has been overwhelmingly positive, crediting OWL as an easy to use application, which creates effective learning opportunities though interactivity and immediate feedback. This poster and accompanying online presentation of the technology will demonstrate how OWL offers new possibilities for active learning in physical spaces by: • providing increased opportunity for student engagement • supporting a range of learners and learning activities • fostering blended learning experiences. The presentation will feature visual displays of the technology, its various interfaces and feedback including clips from interviews with students and academics participating in the early stages of the pilot.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountain biking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.
Resumo:
In an attempt to enhance the efficiency, productivity and competitiveness of today’s Architectural, Engineering, and Contractor (AEC) industry, this paper summarises the current status of an ongoing PhD research investigation in developing a sustainable AEC industry specific best-practice ‘Innovation-driven Change Framework’—more specifically a summation of the ‘fourth interrelated dynamic’ (culture). Leveraging off the outcomes of a two year industry and government supported Cooperative Research Centre for Construction Innovation (CRCCI) research project, as well as referring to recent internationally renowned case studies and related literature investigations, this research investigation includes further identifying, processing, analysing and categorizing various culture change methods, models, frameworks and processes utilized within the AEC and other industry sectors, and incorporating these findings in developing an AEC industry-specific ‘Innovation-driven Change Framework’
Investigating higher education and secondary school web-based learning environments using the WEBLEI
Resumo:
Classroom learning environments are rapidly changing as new digital technologies become more education-friendly. What are students’ perceptions of their technology-rich learning environments? This question is critical as it may have an impact on the effectiveness of the new technologies in classrooms. There are numerous reliable and valid learning environment instruments which have been used to ascertain students’ perceptions of their learning environments. This chapter focuses on one of these instruments, the Web-based Learning Environment Instrument (WEBLEI) (Chang & Fisher, 2003). Since its initial development, this instrument has been used to study a range of learning environments and this chapter presents the findings of two example case-studies that involve such environments.
Resumo:
In this study, we explore motivation in collocated and virtual project teams. The literature on motivation in a project set.,ting reveals that motivation is closely linked to team performance. Based on this literature, we propose a set., of variables related to the three dimensions of ‘Nature of work’, ‘Rewards’, and ‘Communication’. Thirteen original variables in a sample size of 66 collocated and 66 virtual respondents are investigated using one tail t test and principal component analysis. We find that there are minimal differences between the two groups with respect to the above mentioned three dimensions. (p= .06; t=1.71). Further, a principal component analysis of the combined sample of collocated and virtual project environments reveals two factors- ‘Internal Motivating Factor’ related to work and work environment, and ‘External Motivating Factor’ related to the financial and non-financial rewards that explain 59.8% of the variance and comprehensively characterize motivation in collocated and virtual project environments. A ‘sense check’ of our interpretation of the results shows conformity with the theory and existing practice of project organization
Resumo:
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.
Resumo:
This project has blended two streams of enquiry: temporary and transportable construction technology, and flexible blended-learning environments. It seeks to develop prototypes for a series of environments suited for the activities of learning (future-proofed schools), as practiced in the twenty first century. The research utilises techniques of: historic survey, case study, first-hand observation, and architectural design (as research). The design comprises three major components: The determinate landscape: in-situ concrete ‘plate’ that is permanent. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context; manufactured to the principles of design-for-disassembly. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. This project was submitted to the ‘Future Proofing Schools’ competition (professional category) in October 2011. The competition was part of a research project supported under the Australian Research Council’s Linkage Grant funding scheme (project LP0991146).
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
A wireless sensor network system must have the ability to tolerate harsh environmental conditions and reduce communication failures. In a typical outdoor situation, the presence of wind can introduce movement in the foliage. This motion of vegetation structures causes large and rapid signal fading in the communication link and must be accounted for when deploying a wireless sensor network system in such conditions. This thesis examines the fading characteristics experienced by wireless sensor nodes due to the effect of varying wind speed in a foliage obstructed transmission path. It presents extensive measurement campaigns at two locations with the approach of a typical wireless sensor networks configuration. The significance of this research lies in the varied approaches of its different experiments, involving a variety of vegetation types, scenarios and the use of different polarisations (vertical and horizontal). Non–line of sight (NLoS) scenario conditions investigate the wind effect based on different vegetation densities including that of the Acacia tree, Dogbane tree and tall grass. Whereas the line of sight (LoS) scenario investigates the effect of wind when the grass is swaying and affecting the ground-reflected component of the signal. Vegetation type and scenarios are envisaged to simulate real life working conditions of wireless sensor network systems in outdoor foliated environments. The results from the measurements are presented in statistical models involving first and second order statistics. We found that in most of the cases, the fading amplitude could be approximated by both Lognormal and Nakagami distribution, whose m parameter was found to depend on received power fluctuations. Lognormal distribution is known as the result of slow fading characteristics due to shadowing. This study concludes that fading caused by variations in received power due to wind in wireless sensor networks systems are found to be insignificant. There is no notable difference in Nakagami m values for low, calm, and windy wind speed categories. It is also shown in the second order analysis, the duration of the deep fades are very short, 0.1 second for 10 dB attenuation below RMS level for vertical polarization and 0.01 second for 10 dB attenuation below RMS level for horizontal polarization. Another key finding is that the received signal strength for horizontal polarisation demonstrates more than 3 dB better performances than the vertical polarisation for LoS and near LoS (thin vegetation) conditions and up to 10 dB better for denser vegetation conditions.
Resumo:
The paper will describe the ongoing project, Imagining the City: Brisbane Short Story Competition. In 2010, as part of a study investigating urban planning and the gentrification of inner city landmarks, QUT researchers developed six personas to help inform the design of city apartments. Rather than view these personas as static, the authors solicited creative responses to promote further development. Submissions of short stories based on one of the persons, and set in Brisbane, were invited from the general public. Successful stories will be published in an online anthology and as an iPhone application. The paper draws on ethnographic fiction theory to answer the question, how can research, specifically persona and use scenario, be transformed into fiction? The authors suggest that such creative responses in the form of fiction may be useful for urban designers.
Resumo:
Medical industries have brought Information Technology (IT) in their systems for both patients and medical staffs due to the numerous benefits of IT we experience at presently. Moreover, the Mobile healthcare (M-health) system has been developed as the first step of Ubiquitous Health Environment (UHE). With the mobility and multi-functions, M-health system will be able to provide more efficient and various services for both doctors and patients. Due to the invisible feature of mobile signals, hackers have easier access to hospital networks than wired network systems. This may result in several security incidents unless security protocols are well implemented. In this paper, user authentication and authorization procedures will applied as a featured component at each level of M-health systems inthe hospital environment. Accordingly, M-health system in the hospital will meet the optimal requirements as a countermeasure to its vulnerabilities.
Informed learning in online environments : supporting the higher education curriculum beyond Web 2.0
Resumo:
As boundaries between physical and online learning spaces become increasingly blurred in higher education, how can students gain full benefit of Web 2.0 social media and mobile technologies for learning? How can we, as information professionals and educators, best support the information literacy learning needs of students who are universally mobile and Google-focused? This chapter presents informed learning (Bruce, 2008) as a pedagogical construct with potential to support learning across the higher education curriculum, for Web 2.0 and beyond. After outlining the principles of informed learning and how they may enrich the higher education curriculum, we explain the role of library and information professionals in promoting informed learning for Web 2.0 and beyond. Then, by way of illustration, we describe recent experience at an American university where librarians simultaneously learned about and applied informed learning principles in reshaping the information literacy program.
Resumo:
Time-varying bispectra, computed using a classical sliding window short-time Fourier approach, are analyzed for scalp EEG potentials evoked by an auditory stimulus and new observations are presented. A single, short duration tone is presented from the left or the right, direction unknown to the test subject. The subject responds by moving the eyes to the direction of the sound. EEG epochs sampled at 200 Hz for repeated trials are processed between -70 ms and +1200 ms with reference to the stimulus. It is observed that for an ensemble of correctly recognized cases, the best matching timevarying bispectra at (8 Hz, 8Hz) are for PZ-FZ channels and this is also largely the case for grand averages but not for power spectra at 8 Hz. Out of 11 subjects, the only exception for time-varying bispectral match was a subject with family history of Alzheimer’s disease and the difference was in bicoherence, not biphase.
Resumo:
The professional identity of management accountants (MAs) is evolving. According to 8,727 descriptors expressed by 1,158 participants, a range of characteristics of MAs are competing in shaping the identity of future MAs. Respondents strongly valued qualities such as professional principles, hard work, intelligence, analytical and forward thinking in MAs. Further, more innovative, dynamic and people-oriented qualities were strongly suggested for future MAs, with roles relating to multi-skilled business integrator, business partner/advisor, leader, change agent, and decision enabler/maker. Cultivating leadership qualities in the management accounting profession is critical according to participants. Projecting a positive image of the profession and CIMA, and innovative training in management and leadership skills can further support MAs to meet future challenges. Most of all, understanding business and continued personal development by individual MAs is highly valued in shaping the future leadership identity of MAs. Our quantitative data show positive relationships between the professional identification, image and reputation, and leadership qualities of MAs. This suggests that the more one identifies with the profession, the more one is likely to report higher levels of leadership qualities that support members to internalise the desired meaning of their profession and to create a positive image and reputation. After the financial crisis of 2008–2009, the image of financial professions has been tarnished and unpredictable markets and unstable employment opportunities have challenged the profession across all sectors. Many respondents, especially CIMA members, suggested that the turmoil of the financial crisis did not impact negatively but rather elevated the pivotal role of MAs in contributing to cost efficiency and value creation.