525 resultados para Medical Physics
Resumo:
"Combining facets of health physics with medicine, An Introduction to Radiation Protection in Medicine covers the background of the subject and the medical situations where radiation is the tool to diagnose or treat human disease. Encouraging newcomers to the field to properly and efficiently function in a versatile and evolving work setting, it familiarizes them with the particular problems faced during the application of ionizing radiation in medicine. The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine. It covers basic issues related to radiation protection, including the physical science behind radiation protection and the radiobiological basis of radiation protection. The text also presents operational and managerial tools for organizing radiation safety in a medical workplace. Subsequent chapters form the core of the book, focusing on the practice of radiation protection in different medical disciplines. They explore a range of individual uses of ionizing radiation in various branches of medicine, including radiology, nuclear medicine, external beam radiotherapy, and brachytherapy. With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine."--publisher website
Resumo:
This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.
Resumo:
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.
Resumo:
Introduction This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM) and the soft tissue prostate (CBCTST). Methods Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland–Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST. Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM. Results CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of −4.9 to 2.6, −1.6 to 2.5 and −4.7 to 1.9 mm in the superior–inferior, left–right and anterior–posterior planes, respectively. Conclusions Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy.
Resumo:
In this work we test the feasibility of a new calibration method for gel dosimetry. We examine, through Monte Carlo modelling, whether the inclusion of an organic plastic scintillator system at key points within the gel phantom would perturb the dose map. Such a system would remove the requirement for a separate calibration gel, removing many sources of uncertainty.
Resumo:
A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3% / 3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10% overshoot errors.
Resumo:
Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.
Resumo:
Aim A new method of penumbral analysis is implemented which allows an unambiguous determination of field size and penumbra size and quality for small fields and other non-standard fields. Both source occlusion and lateral electronic disequilibrium will affect the size and shape of cross-axis profile penumbrae; each is examined in detail. Method A new method of penumbral analysis is implemented where the square of the derivative of the cross-axis profile is plotted. The resultant graph displays two peaks in the place of the two penumbrae. This allows a strong visualisation of the quality of a field penumbra, as well as a mathematically consistent method of determining field size (distance between the two peak’s maxima), and penumbra (full-widthtenth-maximum of peak). Cross-axis profiles were simulated in a water phantom at a depth of 5 cm using Monte Carlo modelling, for field sizes between 5 and 30 mm. The field size and penumbra size of each field was calculated using the method above, as well as traditional definitions set out in IEC976. The effect of source occlusion and lateral electronic disequilibrium on the penumbrae was isolated by repeating the simulations removing electron transport and using an electron spot size of 0 mm, respectively. Results All field sizes calculated using the traditional and proposed methods agreed within 0.2 mm. The penumbra size measured using the proposed method was systematically 1.8 mm larger than the traditional method at all field sizes. The size of the source had a larger effect on the size of the penumbra than did lateral electronic disequilibrium, particularly at very small field sizes. Conclusion Traditional methods of calculating field size and penumbra are proved to be mathematically adequate for small fields. However, the field size definition proposed in this study would be more robust amongst other nonstandard fields, such as flattening filter free. Source occlusion plays a bigger role than lateral electronic disequilibrium in small field penumbra size.
Resumo:
Aim The assessment of treatment plans is an important component in the education of radiation therapists. The establishment of a grade for a plan is currently based on subjective assessment of a range of criteria. The automation of assessment could provide a number of advantages including faster feedback, reduced chance of human error, and simpler aggregation of past results. Method A collection of treatments planned by a cohort of 27 second year radiation therapy students were selected for quantitative evaluation. Treatment sites included the bladder, cervix, larynx, parotid and prostate, although only the larynx plans had been assessed in detail. The plans were designed with the Pinnacle system and exported using the DICOM framework. Assessment criteria included beam arrangement optimisation, volume contouring, target dose coverage and homogeneity, and organ-at-risk sparing. The in-house Treatment and Dose Assessor (TADA) software1 was evaluated for suitability in assisting with the quantitative assessment of these plans. Dose volume data were exported in per-student and per-structure data tables, along with beam complexity metrics, dose volume histograms, and reports on naming conventions. Results The treatment plans were exported and processed using TADA, with the processing of all 27 plans for each treatment site taking less than two minutes. Naming conventions were successfully checked against a reference protocol. Significant variations between student plans were found. Correlation with assessment feedback was established for the larynx plans. Conclusion The data generated could be used to inform the selection of future assessment criteria, monitor student development, and provide useful feedback to the students. The provision of objective, quantitative evaluations of plan quality would be a valuable addition to not only radiotherapy education programmes but also for staff development and potentially credentialing methods. New functionality within TADA developed for this work could be applied clinically to, for example, evaluate protocol compliance.
Resumo:
This study uses the detailed, bulk analyses of a set of treatment planning and quality assurance data from one radiotherapy centre to provide an illuminating example of the provision evidence-based advice on the management, and potential reduction, of an IMRT quality assurance workload.
Resumo:
Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.
Resumo:
Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.
Resumo:
This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.
Resumo:
This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.
Resumo:
Measurements of half-field beam penumbra were taken using EBT2 film for a variety of blocking techniques. It was shown that minimizing the SSD reduces the penumbra as the effects of beam divergence are diminished. The addition of a lead block directly on the surface provides optimal results with a 10-90% penumbra of 0.53 ± 0.02 cm. To resolve the uncertainties encountered in film measurements, future Monte Carlo measurements of halffield penumbras are to be conducted.