637 resultados para Marine engineering
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
This paper first describes a new three-year, longitudinal project that is implementing engineering education in three middle schools in Australia (grade levels 7-9). This important domain is untapped in Australia. Hence, as a starting point, we conducted a context analysis to help situate engineering education in a school system. We report on this analysis with respect to findings from one of two literature-based surveys that gathered middle-school student responses in mathematics (n=172) and science (n=166) towards understanding their dispositions for engineering education. ANOVA indicated gender differences for 3 out of 23 items in both mathematics and science. In addition, the majority of students agreed or strongly agreed with 17 of the 23 survey items, however, there were some differences between mathematics and science. We conclude the paper with some recommendations for establishing engineering education in schools, including the development of partnerships among engineering and education faculties, school systems, and industry to develop contemporary engineering resources to support school-level mathematics, science, and technology.
Resumo:
President’s Report Hello fellow AITPM members, A few weeks ago we saw another example of all levels of Government pulling together in real time to try to deal with a major transport incident, this time it was container loads of ammonium nitrate falling off the Pacific Adventurer during Cyclone Hamish and the associated major oil spill due to piercing of its hull off Moreton Bay in southern Queensland. The oil spill was extensive, affecting beaches and estuaries from Moreton Island north to the Sunshine Coast; a coastal stretch of at least 60km. We saw the Queensland Government, Brisbane, Moreton Bay and Sunshine Coast Regional Council crews deployed quickly once the gravity of the situation was realised to clean up toxic oil on beaches and prevent extensive upstream contamination. Environmental agencies public and private were quick to respond to help affected wildlife. The Navy’s HMAS Yarra and another minesweeper were deployed to search for the containers in the coastal area in an effort to have them salvaged before all ammonium nitrate could leach into and harm marine habitat, which would have a substantial impact not only on that environment but also the fishing industry. all of this during the final fortnight before a State election.) While this could be branded as a maritime problem, the road transport and logistics system was crucial to the cleanup. The private vehicular ferries were enlisted to transport plant and equipment from Brisbane to Moreton Island. The plant themselves, such as graders, were drawn from road building and maintenance inventory. Hundreds of Councils’ staff were released from other activities to undertake the cleanup. While it will take some time for us to know the long term impacts of this incident, it seems difficult to fault “grassroots” government crews and their private counterparts, such as Island tourism staff, in the initial cleanup effort. From a traffic planning and management perspective, we should also remember that this sort of incident has happened on road and rail corridors in the past, albeit on lesser scales. It underlines that we do need to continue to protect communities, commercial interests, and the environment through rigorous heavy vehicle management, planning and management of dangerous goods routesincluding rail corridors through urban areas), and carefully considered incident and disaster recovery plans and protocols. I’d like to close in reminding everyone again that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. SA Branch President Paul Morris informs me that we have had over 50 paper submissions to date, from which a very balanced and informative programme of sessions has been prepared. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Analysing preservice teachers' potential for implementing engineering education in the middle school
Resumo:
Engineering is pivotal to any country's development. Yet there are insufficient engineers to take up available positions in many countries, including Australia (Engineers Australia, 2008). Engineering education is limited in Australia at the primary, middle and high school levels. One of the starting points for addressing this shortfall lies in preservice teacher education. This study explores second-year preservice teachers' potential to teach engineering in middle school, following their engagement with engineering concepts in their science curriculum unit and their teaching of engineering activities to Year 7 students. Using a literature-based pretest-posttest survey, items were categorised into four constructs (ie. personal professional attributes, student motivation, pedagogical knowledge and fused curricula). Results indicated that the preservice teachers' responses had not changed for instilling positive attitudes (88%) and accepting advice from colleagues (94%). However, there was statistical significance with 9 of the 25 survey items (p<0.05) after the preservice teachers' involvement in engineering activities. Fusing engineering education with other subjects, such as mathematics and science, is an essential first step in promoting preservice teachers' potential to implement engineering education in the middle school.
Resumo:
Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.
Resumo:
There is a growing need for international transparency of engineering qualifications, and mechanisms to support and facilitate student mobility. In response, there are a number of global initiatives attempting to address these needs, particularly in Europe, North America and Australia. The Conceive-Design-Implement-Operate (CDIO) Initiative has a set of standards, competencies, and proficiency levels developed through a global community of practice. It is a well-structured framework in which best-practice internationalisation and student mobility can be embedded. However, the current 12 CDIO Standards do not address international qualifications or student mobility. Based on an environmental scan of global activities, the underpinning principles of best practice are identified and form the basis of the proposed 13th CDIO Standard — “Internationalization and Mobility”.
Resumo:
The CDIO Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. The framework is consistent with conventional application to undergraduate programs and professional practice, but adapted for the preparatory context. As with the original CDIO framework with proficiency levels, this extended framework is informed by Bloom’s Educational Objectives. A proficiency evaluation of Queensland Study Authority’s Engineering Technology senior syllabus is demonstrated indicating proficiency levels embedded within this secondary school subject within a preparatory scope. Through this extended CDIO framework, students and faculty have greater awareness and access to tools to promote (i) student engagement in their own graduate capability development, (ii) faculty engagement in course and program design, through greater transparency and utility of the continuum of graduate capability development with associate levels of proficiency, and the context in which they exist in terms of pre-tertiary engineering studies; and (iii) course maintenance and quality audit methodology for the purpose of continuous improvement processes and program accreditation.
Resumo:
Construction projects can involve a diverse range of stakeholders and the success of the project depends very much on fulfilling their needs and expectations. It is important, therefore, to identify and recognize project stakeholders and develop a rigorous stakeholder management process. However, limited research has investigated the impact of stakeholders on construction projects in developing countries. A stakeholder impact analysis (SIA), based on an approach developed by Olander (2007), was adopted to investigate the stakeholders' impact on state-owned civil engineering projects in Vietnam. This involved the analysis of a questionnaire survey of 57 project managers to determine the relative importance of different stakeholders. The results show the client to have the highest level of impact on the projects, followed by project managers and the senior management of state-owned engineering firms. The SIA also provides suggestions to project managers in developing and evaluating the stakeholder management process.
Resumo:
One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.