97 resultados para ZNO NANOWIRES
Resumo:
This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.
Resumo:
This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.
Resumo:
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm- 3 and mobility of 1.31 cm2 V- 1 s- 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.
Resumo:
Examples of successful fabrication of low-dimensional semiconducting nanomaterials in the Integrated Plasma-Aided Nanofabrication Facility are shown. Self-assembled size-uniform ZnO nanoparticles, ultra-high-aspect ratio Si nanowires, vertically aligned cadmium sulfide nanostructures, and quarternary semiconducting SiCAlN nanomaterial have been synthesized using inductively coupled plasma-assisted RF magnetron sputtering deposition. The observed increase in crystallinity and growth rates of the nanostructures are explained by using a model of plasma-enhanced adatom surface diffusion under conditions of local energy exchange between the ion flux and the growth surface. Issues related to plasma-based growth of low-dimensional semiconducting nanomaterials are discussed as well. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain.
Resumo:
Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.
Resumo:
An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.
Resumo:
A combination of laser plasma ablation and strain control in CdO/ZnO heterostructures is used to produce and stabilize a metastable wurtzite CdO nanophase. According to the Raman selection rules, this nanophase is Raman-active whereas the thermodynamically preferred rocksalt phase is inactive. The wurtzite-specific and thickness/strain-dependent Raman fingerprints and phonon modes are identified and can be used for reliable and inexpensive nanophase detection. The wurtzite nanophase formation is also confirmed by x-ray diffractometry. The demonstrated ability of the metastable phase and phonon mode control in CdO/ZnO heterostructures is promising for the development of next-generation light emitting sources and exciton-based laser diodes.
Resumo:
We report fabrication and optical properties of electrochemically deposited silver nanowires into nanoporous alumina template. A finite element method is used to study plasmonic coupling of dipole emitters with the silver nanowires.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
We report on the mechanical properties of sodium titanate nanowires (Na2Ti3O7 NW) through a combination of bending experiments and theoretical analysis. Na2Ti3O7 NWs with lateral dimensions ranging from 20–700 nm were synthesized by a hydrothermal approach. A focused ion beam (FIB) was used to manipulate the selected Na2Ti3O7 NW over a hole drilled in an indium tin oxide substrate. After welding the nanowire, a series of bending tests was performed. It was observed that the Na2Ti3O7 NW exhibits a brittle behavior, and a nonlinear elastic deformation was observed before failure. By using the modified Euler–Bernoulli beam theory, such nonlinear elastic deformation is found to originate from a combination of surface effects and axial elongation (arising from the bending deformation). The effective Young's modulus of the Na2Ti3O7 NW was found to be independent of the wire length, and ranges from 21.4 GPa to 45.5 GPa, with an average value of 33 ± 7 GPa. The yield strength of the Na2Ti3O7 NW is measured at 2.7 ± 0.7 GPa.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.