121 resultados para Multi-objective simulated annealing
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time
Resumo:
Conservation decision tools based on cost-effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multi objective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3-day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost-effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost-effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.
Resumo:
A multi-objective design optimization study has been conducted for upstream fuel injection through porous media applied to the first ramp of a two-dimensional scramjet intake. The optimization has been performed by coupling evolutionary algorithms assisted by surrogate modeling and computational fluid dynamics with respect to three design criteria, that is, the maximization of the absolute mixing quantity, total pressure saving, and fuel penetration. A distinct Pareto optimal front has been obtained, highlighting the counteracting behavior of the total pressure against the mixing efficiency and fuel penetration. The injector location and size have been identified as the key design parameters as a result of a sensitivity analysis, with negligible influence of the porous properties in the configurations and conditions considered in the present study. Flowfield visualization has revealed the underlying physics associated with the effects of these dominant parameters on the shock structure and intensity.
Resumo:
Energy efficient embedded computing enables new application scenarios in mobile devices like software-defined radio and video processing. The hierarchical multiprocessor considered in this work may contain dozens or hundreds of resource efficient VLIW CPUs. Programming this number of CPU cores is a complex task requiring compiler support. The stream programming paradigm provides beneficial properties that help to support automatic partitioning. This work describes a compiler for streaming applications targeting the self-build hierarchical CoreVA-MPSoC multiprocessor platform. The compiler is supported by a programming model that is tailored to fit the streaming programming paradigm. We present a novel simulated-annealing (SA) based partitioning algorithm, called Smart SA. The overall speedup of Smart SA is 12.84 for an MPSoC with 16 CPU cores compared to a single CPU implementation. Comparison with a state of the art partitioning algorithm shows an average performance improvement of 34.07%.
Resumo:
This thesis focused upon the development of improved capacity analysis and capacity planning techniques for railways. A number of innovations were made and were tested on a case study of a real national railway. These techniques can reduce the time required to perform decision making activities that planners and managers need to perform. As all railways need to be expanded to meet increasing demands, the presumption that analytical capacity models can be used to identify how best to improve an existing network at least cost, was fully investigated. Track duplication was the mechanism used to expanding a network's capacity, and two variant capacity expansion models were formulated. Another outcome of this thesis is the development and validation of bi objective models for capacity analysis. These models regulate the competition for track access and perform a trade-off analysis. An opportunity to develop more general mulch-objective approaches was identified.
Resumo:
Partial evaluation of infrastructure investments have resulted in expensive mistakes, unsatisfactory outcomes and increased uncertainties for too many stakeholders, communities and economies in both developing and developed nations. "Complex Stakeholder Perception Mapping" (CSPM), is a novel approach that can address existing limitations by inclusively framing, capturing and mapping the spectrum of insights and perceptions using extended Geographic Information Systems. Maps generated in CSPM offer presentations of flexibly combined, complex perceptions of stakeholders on multiple aspects of development. CSPM extends the applications of GIS software in non-spatial mapping and of Multi-Criteria Analysis with a multidimensional evaluation platform and augments decision science capabilities in addressing complexities. Application of CSPM can improve local and regional economic gains from infrastructure projects and aid any multi-objective and multi-stakeholder decision situations.
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Resumo:
This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.
Resumo:
Mixed integer programming and parallel-machine job shop scheduling are used to solve the sugarcane rail transport scheduling problem. Constructive heuristics and metaheuristics were developed to produce a more efficient scheduling system and so reduce operating costs. The solutions were tested on small and large size problems. High-quality solutions and improved CPU time are the result of developing new hybrid techniques which consist of different ways of integrating simulated annealing and Tabu search techniques.
Resumo:
This article focusses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.
Resumo:
Multi-objective optimization is an active field of research with broad applicability in aeronautics. This report details a variant of the original NSGA-II software aimed to improve the performances of such a widely used Genetic Algorithm in finding the optimal Pareto-front of a Multi-Objective optimization problem for the use of UAV and aircraft design and optimsaiton. Original NSGA-II works on a population of predetermined constant size and its computational cost to evaluate one generation is O(mn^2 ), being m the number of objective functions and n the population size. The basic idea encouraging this work is that of reduce the computational cost of the NSGA-II algorithm by making it work on a population of variable size, in order to obtain better convergence towards the Pareto-front in less time. In this work some test functions will be tested with both original NSGA-II and VPNSGA-II algorithms; each test will be timed in order to get a measure of the computational cost of each trial and the results will be compared.
Resumo:
Game strategies have been developed in past decades and used in the field of economics, engineering, computer science and biology due to their efficiency in solving design optimisation problems. In addition, research on Multi-Objective (MO) and Multidisciplinary Design Optimisation (MDO) has focused on developing robust and efficient optimisation method to produce quality solutions with less computational time. In this paper, a new optimisation method Hybrid Game Strategy for MO problems is introduced and compared to CMA-ES based optimisation approach. Numerical results obtained from both optimisation methods are compared in terms of computational expense and model quality. The benefits of using Game-strategies are demonstrated.
Resumo:
The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.