Mission path planning of aerial survey tasks using hybrid game evolutionary algorithm


Autoria(s): Rappa, G.; Gonzalez, L.F.
Data(s)

05/12/2011

Resumo

The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/75881/

Publicador

Queensland University of Technology

Relação

http://eprints.qut.edu.au/75881/1/Hybrid_Game_Evolutionary_Algorithm-Rappa-Gonzalez-QUT-TR.pdf

Rappa, G. & Gonzalez, L.F. (2011) Mission path planning of aerial survey tasks using hybrid game evolutionary algorithm. Queensland University of Technology, Brisbane , QLD.

Direitos

Copyright 2011 Queensland University of Technology & The Authors

Fonte

Australian Research Centre for Aerospace Automation; School of Electrical Engineering & Computer Science; Institute for Future Environments; Science & Engineering Faculty

Palavras-Chave #090100 AEROSPACE ENGINEERING #Mission Path Planning #Hybrid Game #Aerial Survey #Evolutionary Algorithm #UAV #UAS #Unmanned Aerial Vehicles
Tipo

Report