848 resultados para Learning sequence
Resumo:
ICT (Information and Communication Technology) creates numerous opportunities for teachers to re-think their pedagogies. In subjects like mathematics which draws upon abstract concepts, ICT creates such an opportunity. Instead of a mimetic pedagogical approach, suitably designed activities with ICT can enable learners to engage more proactively with their learning. In this quasi-experimental designed study, ICT was used in teaching mathematics to a group of first year high school students (N=25) in Australia. The control group was taught predominantly through traditional pedagogies (N=22). Most of the variables that had previously impacted on the design of such studies were suitably controlled in this yearlong investigation. Quantitative and qualitative results showed that students who were taught by ICT driven pedagogies benefitted from the experience. Pre and post-test means showed that there was a difference between the treatment and control groups. Of greater significance was that the students (in the treatment group) believed that the technology enabled them to engage more with their learning.
Resumo:
Presentation Structure: - THEORY - CASE STUDY 1: Southbank Institute of Technology - CASE STUDY 2: QUT Science and Technology Precinct - MORE IDEAS - ACTIVITY
Resumo:
This paper investigates learning environments from the view of the key users - students. Recent literature on designing Learning Landscapes indicates a near absence of the student voice, assuming that the majority of students are either uninterested or unable to express what they want or need, in a learning environment. The focus of this research is to reveal Architecture and Fashion Design students’ perceptions of their learning environments. Furthermore, this study questions the appropriateness of usual design of learning spaces for Design students, or if the environment needs to be specifically catered for the learning of different disciplines of Design, such as Architecture and Fashion Design. Senior Architecture and Fashion Design students were invited to participate in a qualitative mixed method study, including investigation into existing literature, questionnaires, focus groups and spontaneous participatory research. Through the analysis of data it was found that students’ perceptions validate discipline specific learning environments and contribute towards the development of a framework for the design of future Learning Landscapes, for Design education.
Resumo:
“Our students have changed radically. Today’s students are no longer the people our educational system was designed to teach” (Prensky, 2001, p. 1). The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place, and changing perceptions of traditional learning landscapes (JISC, 2006; Neary et al., 2010). Mobile computers combined with wireless technology, have completely transformed the educational world; students have turned nomad[ic], engaging in conversations and thinking across traditional campus spaces (Alexander, 2004; Fisher, 2005). In this workshop we will be attempting to de-mystify a facet of mobile learning, by working in small groups to set up and kick start a number of social media sites, which can be used for collaboration and information exchange, in the design studio.
Resumo:
Since 2004, the Australian Learning and Teaching Council (ALTC) and its predecessor, the Carrick Institute for Learning and Teaching in Higher Education, have funded numerous teaching and educational research-based projects in the Mathematical Sciences. In light of the Commonwealth Government’s decision to close the ALTC in 2011, it is appropriate to take account of the ALTCs input into the Mathe- matical Sciences in higher education. Here we present an overview of ALTC projects in the Mathematical Sciences, as well as report on the contributions they have made to the Discipline.
Resumo:
Process-oriented thinking has become the major paradigm for managing companies and other organizations. The push for better processes has been even more intense due to rapidly evolving client needs, borderless global markets and innovations swiftly penetrating the market. Thus, education is decisive for successfully introducing and implementing Business Process Management (BPM) initiatives. However, BPM education has been an area of challenge. This special issue aims to provide current research on various aspects of BPM education. It is an initial effort for consolidating better practices, experiences and pedagogical outcomes founded with empirical evidence to contribute towards the three pillars of education: learning, teaching, and disseminating knowledge in BPM.
Resumo:
Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.
Resumo:
Reflection is an essential part of being an effective learner and working as a productive teacher. It enables the learner or teacher to deliberate about the factors that lead to successful learning and teaching for them and/or their students, in a particular place and for a specific purpose, so they can make reasoned and effective choices. This chapter introduces important frameworks that cover a century of thinking around reflection in education, and illustrates how preservice teachers can use these ideas across three phases. First, becoming a reflective learner as a university student to enhance learning and assessment outcomes; second, becoming a reflective teacher to improve classroom teaching and learning outcomes; and third, developing the reflective capacities of primary students so they can enhance their skills for lifelong learning.
Resumo:
According to Karl Popper, widely regarded as one of the greatest philosophers of science in the 20th century, falsifiability is the primary characteristic that distinguishes scientific theories from ideologies – or dogma. For example, for people who argue that schools should treat creationism as a scientific theory, comparable to modern theories of evolution, advocates of creationism would need to become engaged in the generation of falsifiable hypothesis, and would need to abandon the practice of discouraging questioning and inquiry. Ironically, scientific theories themselves are accepted or rejected based on a principle that might be called survival of the fittest. So, for healthy theories on development to occur, four Darwinian functions should function: (a) variation – avoid orthodoxy and encourage divergent thinking, (b) selection – submit all assumptions and innovations to rigorous testing, (c) diffusion – encourage the shareability of new and/or viable ways of thinking, and (d) accumulation – encourage the reuseability of viable aspects of productive innovations.
Resumo:
The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time.
Resumo:
Educators are faced with many challenging questions in designing an effective curriculum. What prerequisite knowledge do students have before commencing a new subject? At what level of mastery? What is the spread of capabilities between bare-passing students vs. the top performing group? How does the intended learning specification compare to student performance at the end of a subject? In this paper we present a conceptual model that helps in answering some of these questions. It has the following main capabilities: capturing the learning specification in terms of syllabus topics and outcomes; capturing mastery levels to model progression; capturing the minimal vs. aspirational learning design; capturing confidence and reliability metrics for each of these mappings; and finally, comparing and reflecting on the learning specification against actual student performance. We present a web-based implementation of the model, and validate it by mapping the final exams from four programming subjects against the ACM/IEEE CS2013 topics and outcomes, using Bloom's Taxonomy as the mastery scale. We then import the itemised exam grades from 632 students across the four subjects and compare the demonstrated student performance against the expected learning for each of these. Key contributions of this work are the validated conceptual model for capturing and comparing expected learning vs. demonstrated performance, and a web-based implementation of this model, which is made freely available online as a community resource.
Resumo:
The knowledge economy of the 21st century requires skills such as creativity, critical thinking, problem solving, communication and collaboration (Partnership for 21st century skills, 2011) – skills that cannot easily be learnt from books, but rather through learning-by-doing and social interaction. Big ideas and disruptive innovation often result from collaboration between individuals from diverse backgrounds and areas of expertise. Public libraries, as facilitators of education and knowledge, have been actively seeking responses to such changing needs of the general public...
Resumo:
With the advent of digital media and online information resources, public libraries as physical destinations for information access are being increasingly challenged. As a response, many libraries follow the trend of removing bookshelves in order to provide more floorspace for social interaction and collaboration. Such spaces follow a Commons 2.0 model: they are designed to support collaborative work and social learning. The acquisition of skills and knowledge is facilitated as a result of being surrounded by and interacting with a community of likeminded others. Based on the results of a case study on a Commons 2.0 library space, this paper describes several issues of collaboration and social learning in public library settings. Acknowledging the significance of the architectural characteristics of the physical space, we discuss opportunities for ambient media to better reflect the social attributes of the library as a place; i.e. amplify the sense of other co-present library visitors and provide opportunities for shared encounters and conversations, which would remain invisible otherwise. We present the design of a user check-in system for improving the library as a physical destination for social learning, sharing, and inspiration for and by the community.
Resumo:
Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.