596 resultados para Science education research
Resumo:
Here's a challenge. Try searching Google for the phrase 'rural science teachers' in Australian web content. Surprisingly, my attempts returned only two hits, neither of which actually referred to Australian teachers. Searches for 'rural science education' fare little better. On this evidence one could be forgiven for wondering whether the concept of a rural science teacher actually exists in the Australian consciousness. OK, so Google is not (yet) the arbiter of our conceptions, and to be fair, there aren't many hits for 'urban science teacher' either. The point I'm making is that in Australia we don't tend to conceptualise science teachers or science education as rural or urban. As a profession we are quite mobile, and throughout our careers many of us have worked in both city and country schools. But that's not to say that rural science teaching isn't conceptually or practically different to teaching in the city.
Resumo:
As more is known about contemporary cultural shifts and the effect this has on the young, research must consider how children operate as global citizens. Children are innocent and vulnerable, but also actively participate in the world; research into early childhood must therefore refine ideas and conceptions and develop research methodologies that see children as superdiverse young citizens. Intergenerational collaborative drawing, which involves adult researchers and children drawing together, is a method that supports superdimensions. A group of researchers tested the method to consider the politics of research, particularly when researcher neutrality and the conventions around gathering ‘unsullied’ data are challenged.
Resumo:
There has been substantial growth in the provision of, and importance attached to, coach education in many Western countries in particular, but there is also an emerging interest in the developing world (Gilbert & Trudel, 1999; Lyle, 2002). Yet this growth in interest has not resulted in a corresponding increase in research activity. Much of the focus of the existing coach education literature has been on coach development and learning (Cushion, Armour,& Jones, 2003; Malete et al, 2000; Sage, 1989; Weiss et al, 1991), coaching behavior and coach effectiveness training in the context of youth sports (Smith & Smoll, 1990; Smith, Smoll, & Barnett, 1995; Smoll et al.,1993) and the problems associated with the privileging of technical, tactical, and bio-scientific knowledges that have been characteristic features of much coach education provision (Abraham & Collins, 1998; Campbell, 1993; Potrac et al, 2000; Schempp, 2000). While this scholarship has provided valuable insights into some aspects of coach education, it underlines the absence of research addressing a range of topics such as the development of coach education curricula, the structures for coach learning, coaches’ learning processes and coach certification (Gilbert & Trudel, 2000). In this paper we discuss a new theoretical frame for coach education research centered on the idea of communities of practice.
Resumo:
Science education has been the subject of increasing public interest over the last few years. While a good part of this attention has been due to the fundamental reshaping of school curricula and teacher professional standards currently underway, there has been a heightened level of critical media commentary about the state of science education in schools and science teacher education in universities. In some cases, the commentary has been informed by sound evidence and balanced perspectives. More recently, however, a greater degree of ignorance and misrepresentation has crept into the discourse. This chapter provides background on the history and status of science teacher education in Australia, along with insights into recent developments and challenges.
Resumo:
The Australasian Science Education Research Association Ltd. (ASERA) is the oldest educational research association in Australasia. Starting as an informal meeting of science educators at Monash University in May 1970, it has evolved progressively without major controversy into a formally constituted limited company that promotes science education at all levels and contexts. There are no revelations of fractures within the association, and no accounts of major controversy, other than reference to a few grumbles here and there when changes were proposed. So, has the ASERA experience been positive and uplifting for all? Are there unspoken controversies? Can the uncontroversial be made controversial?
Resumo:
This collection of historical accounts provides diverse perspectives on the structure and culture of the community of researchers who participate in activities of the Australasian Science Education Research Association (ASERA). It describes the formation of the Association, and identifies major changes and challenges for the ever growing and internationalisation of its membership.
Resumo:
BACKGROUND The work described in this paper has emerged from an ALTC/OLT funded project, Exploring Intercultural Competency in Engineering. The project indentified many facets of culture and intercultural competence that go beyond a culture-as-nationality paradigm. It was clear from this work that resources were needed to help engineering educators introduce students to the complex issues of culture as they relate to engineering practice. A set of learning modules focussing on intercultural competence in engineering practice were developed early on in the project. Through the OLT project, these modules have been expanded into a range of resources covering various aspects of culture in engineering. Supporting the resources, an eBook detailing the ins and outs of intercultural competency has also been developed to assist engineering educators to embed opportunities for students to develop skills in unpacking and managing cross-cultural challenges in engineering practice. PURPOSE This paper describes the key principles behind the development of the learning modules, the areas they cover and the eBook developed to support the modules. The paper is intended as an introduction to the approaches and resources and extends an invitation to the community to draw from, and contribute to this initial work. DESIGN/METHOD A key aim of this project was to go beyond the culture-as-nationality approach adopted in much of the work around intercultural competency (Deardorff, 2011). The eBook explores different dimensions of culture such as workplace culture, culture’s influence on engineering design, and culture in the classroom. The authors describe how these connect to industry practice and explore what they mean for engineering education. The packaged learning modules described here have been developed as a matrix of approaches moving from familiar known methods through complicated activities relying to some extent on expert knowledge. Some modules draw on the concept of ‘complex un-order’ as described in the ‘Cynefin domains’ proposed by Kurtz and Snowden (2003). RESULTS Several of the modules included in the eBook have already been trialled at a variety of institutions. Feedback from staff has been reassuringly positive so far. Further trials are planned for second semester 2012, and version 1 of the eBook and learning modules, Engineering Across Cultures, is due to be released in late October 2012. CONCLUSIONS The Engineering Across Cultures eBook and learning modules provide a useful and ready to employ resource to help educators tackle the complex issue of intercultural competency in engineering education. The book is by no means exhaustive, and nor are the modules, they instead provide an accessible, engineering specific guide to bringing cultural issues into the engineering classroom.
Resumo:
BACKGROUND Collaborative and active learning have been clearly identified as ways students can engage in learning with each other and the academic staff. Traditional tier based lecture theatres and the didactic style they engender are not popular with students today as evidenced by the low attendance rates for lectures. Many universities are installing spaces designed with tables for group interaction with evolutions on spaces such as the TEAL (Technology Enabled Active Learning) (Massachusetts Institute of Technology, n.d.) and SCALE-UP (Student-Centred Activities for Large-Enrolment Undergraduate Programs) (North Carolina State University, n.d.) models. Technology advances in large screen computers and applications have also aided the move to these collaborative spaces. How well have universities structured learning using these spaces and how have students engaged with the content, technology, space and each other? This paper investigates the application of collaborative learning in such spaces for a cohort of 800+ first year engineers in the context of learning about and developing professional skills representative of engineering practice. PURPOSE To determine whether moving from tiers to tables enhances the student experience. Does utilising technology rich, activity based, collaborative learning spaces lead to positive experiences and active engagement of first year undergraduate engineering students? In developing learning methodology and approach in new learning spaces, what needs to change from a more traditional lecture and tutorial configuration? DESIGN/METHOD A post delivery review and analysis of outcomes was undertaken to determine how well students and tutors engaged with learning in new collaborative learning spaces. Data was gathered via focus group and survey of tutors, students survey and attendance observations. The authors considered the unit delivery approach along with observed and surveyed outcomes then conducted further review to produce the reported results. RESULTS Results indicate high participation in the collaborative sessions while the accompanying lectures were poorly attended. Students reported a high degree of satisfaction with the learning experience; however more investigation is required to determine the degree of improvement in retained learning outcomes. Survey feedback from tutors found that students engaged well in the activities during tutorials and there was an observed improvement in the quality of professional practice modelled by students during sessions. Student feedback confirmed the positive experiences in these collaborative learning spaces with 30% improvement in satisfaction ratings from previous years. CONCLUSIONS It is concluded that the right mix of space, technology and appropriate activities does engage students, improve participation and create a rich experience to facilitate potential for improved learning outcomes. The new Collaborative Teaching Spaces, together with integrated technology and tailored activities, has transformed the delivery of this unit and improved student satisfaction in tutorials significantly.
Resumo:
BACKGROUND The engineering profession in Australia has failed to attract young women for the last decade or so despite all the effort that have gone into promoting engineering as a preferred career choice for girls. It is a missed opportunity for the profession to flourish as a heterogeneous team. Many traditional initiatives and programs have failed to make much impact or at best incremental improvement into attracting and retaining more women in the profession. The reasons why girls and young women in most parts of the world show little interest in engineering haven't changed, despite all the efforts to address them, the issue proposed here in this paper is with the perceptions of engineering in the community and the confidence to pursue it. This gender imbalance is detrimental for the engineering profession, and hence an action-based intervention strategy was devised by the Women in Engineering Qld Chapter of Engineers Australia in 2012 to change the perceptions of school girls by redesigning the engagement strategy and key messages. As a result, the “Power of Engineering Inc” (PoE) was established as a not-for-profit organisation, and is a collaborative effort between government, schools, universities, and industry. This paper examines a case study in changing the perceptions of year 9 and 10 school girls towards an engineering career. PURPOSE To evaluate and determine the effectiveness of an intervention in changing the perceptions of year 9 and 10 school girls about engineering career options, but specifically, “What were their perceptions of engineering before today and have those perceptions changed?” DESIGN/METHOD The inaugural Power of Engineering (PoE) event was held on International Women’s Day, Thursday 8 March 2012 and was attended by 131 high school female students (year 9 and 10) and their teachers. The key message of the day was “engineering gives you the power to change the world”. A questionnaire was conducted with the participating high school female students, collecting both quantitative and qualitative data. The survey instrument has not been validated. RESULTS The key to the success of the event was as a result of collaboration between all participants involved and the connection created between government, schools, universities and industry. Of the returned surveys (109 of 131), 91% of girls would now consider a career in engineering and 57% who had not considered engineering before the day would now consider a career in engineering. Data collected found significant numbers of negative and varying perceptions about engineering careers prior to the intervention. CONCLUSIONS The evidence in this research suggests that the intervention assisted in changing the perceptions of year 9 and 10 female school students towards engineering as a career option. Whether this intervention translates into actual career selection and study enrolment is to be determined. In saying this, the evidence suggests that there is a critical and urgent need for earlier interventions prior to students selecting their subjects for year 11 and 12. This intervention could also play its part in increasing the overall pool of students engaged in STEM education.
Resumo:
Recent studies have linked the ability of novice (CS1) programmers to read and explain code with their ability to write code. This study extends earlier work by asking CS2 students to explain object-oriented data structures problems that involve recursion. Results show a strong correlation between ability to explain code at an abstract level and performance on code writing and code reading test problems for these object-oriented data structures problems. The authors postulate that there is a common set of skills concerned with reasoning about programs that explains the correlation between writing code and explaining code. The authors suggest that an overly exclusive emphasis on code writing may be detrimental to learning to program. Non-code writing learning activities (e.g., reading and explaining code) are likely to improve student ability to reason about code and, by extension, improve student ability to write code. A judicious mix of code-writing and code-reading activities is recommended.
Resumo:
Two key elements of education for sustainability (EfS) are action-competence, and the importance of place and experiencing the natural world. These elements emphasise and depend on the relationship between learners and their real world contexts, and have been incorporated to some extent into the sustainability cross-curricular perspective of the new Australian curriculum. Given the importance of real-world experiential learning in EfS, what is to be made of the use of multi-user virtual worlds in EfS? We went with our preservice secondary science teachers to the very appealing virtual world Quest Atlantis, which we are using in this paper as an example to explore the value of virtual worlds in EfS. In assessing the virtual world of Quest Atlantis against Australia’s Sustainability Curriculum Framework, many areas of coherence are evident relating to world viewing, systems thinking and futures thinking, knowledge of ecological and human systems, and implementing and reflecting on the consequences of actions. The power and appeal of these virtual experiences in developing these knowledges is undeniable. However there is some incoherence between the elements of EfS as expressed in the Sustainability Curriculum Framework and the experience of QA where learners are not acting in their real world, or developing connection with real place. This analysis highlights both the value and some limitations of virtual worlds as a venue for EfS.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
For almost a half century David F. Treafust has been an exemplary science educator who has contributed through his dedication and commitments to students, curriculum development and collaboration with teachers, and cutting edge research in science education that has impacted the field globally, nationally and locally. A hallmark of his outstanding career is his collaborative style that inspires others to produce their best work.