534 resultados para American colonization society.
Resumo:
Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using Af-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90 were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt of NVP absorbed 40 of water. As the amount of NVP was increased from 30 to 50 wt , the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Exclusion processes on a regular lattice are used to model many biological and physical systems at a discrete level. The average properties of an exclusion process may be described by a continuum model given by a partial differential equation. We combine a general class of contact interactions with an exclusion process. We determine that many different types of contact interactions at the agent-level always give rise to a nonlinear diffusion equation, with a vast variety of diffusion functions D(C). We find that these functions may be dependent on the chosen lattice and the defined neighborhood of the contact interactions. Mild to moderate contact interaction strength generally results in good agreement between discrete and continuum models, while strong interactions often show discrepancies between the two, particularly when D(C) takes on negative values. We present a measure to predict the goodness of fit between the discrete and continuous model, and thus the validity of the continuum description of a motile, contact-interacting population of agents. This work has implications for modeling cell motility and interpreting cell motility assays, giving the ability to incorporate biologically realistic cell-cell interactions and develop global measures of discrete microscopic data.
Resumo:
On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair of an organism; on the macroscale, such effects are important in the sustainability of a population in its environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenomenological descriptions, such as the logistic model, are used to model population growth. In this work we outline some methods for analyzing exclusion processes which include agent proliferation, death and motility in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems may display large deviations from the mean field, and suggest computationally tractable methods to correct the logistic-type description.
Resumo:
We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.
Resumo:
Bananas are hosts to a large number of banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity amongst BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence non-specific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterisation of BSV isolates infecting banana. This technique was shown to discriminate between integrated and episomal BSV DNA, specifically detecting the latter in several banana cultivars known to contain episomal and/or integrated sequences of Banana streak Mysore virus (BSMyV), Banana streak OL virus (BSOLV) and Banana streak GF virus (BSGFV). Using RCA, the presence of BSMyV and BSOLV was confirmed in Australia, while BSOLV, BSGFV, Banana streak Uganda I virus (BSUgIV), Banana streak Uganda L virus (BSUgLV) and Banana streak Uganda M virus (BSUgMV) were detected in Uganda. This is the first confirmed report of episomally-derived BSUglV, BSUgLV and BSUgMV in Uganda. As well as its ability to detect BSV, RCA was shown to detect two other pararetroviruses, Sugarcane bacilliform virus in sugarcane and Cauliflower mosaic virus in turnip.
Resumo:
The α,ω-diyne 4,7,10-trithiatrideca-2,11-diyne reacts with [RuCl2(PPh3)3] and KPF6 to form the phosphonio-substituted metallatricyclic salt [RuCl(PPh3){κ4C,S,S′,S′′-S(C≡CMe)C2H4SC2H4SC(PPh3)CMe}]PF6 arising from the activation of one alkynyl group toward nucleophilic attack by extraneous phosphine.
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
OBJECTIVES: To investigate the effects of hearing impairment and distractibility on older people's driving ability, assessed under real-world conditions. DESIGN: Experimental cross-sectional study. SETTING: University laboratory setting and an on-road driving test. PARTICIPANTS: One hundred seven community-living adults aged 62 to 88. Fifty-five percent had normal hearing, 26% had a mild hearing impairment, and 19% had a moderate or greater impairment. ---------- MEASUREMENTS: Hearing was assessed using objective impairment measures (pure-tone audiometry, speech perception testing) and a self-report measure (Hearing Handicap Inventory for the Elderly). Driving was assessed on a closed road circuit under three conditions: no distracters, auditory distracters, and visual distracters. RESULTS: There was a significant interaction between hearing impairment and distracters, such that people with moderate to severe hearing impairment had significantly poorer driving performance in the presence of distracters than those with normal or mild hearing impairment. CONCLUSION: Older adults with poor hearing have greater difficulty with driving in the presence of distracters than older adults with good hearing.
Resumo:
This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.
Resumo:
During the spring of 1987, 1,215 samples of spring oats (Avena sativa L.) were collected in Madison, Champaign, Woodford, Warren, and DeKalb counties, Illinois. At each site on each of three sampling dates, 45 samples were collected (regardless of symptoms) in a W pattern in I ha and tested for the PAY, MAV, RPV, and RMV serotypes of barley yellow dwarf virus (BYDV) by direct doubleantibody sandwich enzyme-linked immunosorbent assay (ELISA). RMV was not detected at any location. PAY and RPV were detected at all locations, as early as 17 April in Champaign County. The incidences of P A V and RPV from all plants sampled ranged from 2 to 64% and from 2 to 88%, respectively. Highest incidences of both strains were in May samples [rom Woodford County. MAV was detected in lower incidences (2-16%) only in samples from the central region of the state (Champaign, Woodford, and Warren counties). The presence of MA V serotypes was confirmed in triple-antibody sandwich ELISA with the MA V -specific MAFF2 monoclonal antibody from L. Torrance. In the last previous survey for BYDV in Illinois during 1967-1968 (1), about 75% of the isolates were PAY and about 20% were RPV; single isolates of RMV and MAV were found. Twenty years later, 55% were PAY, 39% were RPV, and 6% were MAV.
Resumo:
Double-stranded RNA species ranging in molecular weight from 0.95 to 6.3 × 106 were detected in grapevines in New York. We recently showed that two of the species (Mr = 5.3 and 4.4 × 106) are associated with rupestris stem pitting disease. In this report, we show that the other eight detectable dsRNA species are associated with the powdery mildew fungus, Uncinula necator. These dsRNAs associated with the powdery mildew fungus were previously detected in leaves and epidermal stem tissue of grapevines infected with powdery mildew. The same dsRNA species were also detected from extracts of isolated cleistothecia and conidia of U. necator devoid of plant tissue. Isometric and rigid rodlike particles were observed in single cleistothecia preparations when examined under transmission electron microscopy.
Resumo:
Rupestris stem pitting (rSP), a graft-transmissible grapevine disease, can be identified only by its reaction (pitted wood) on inoculated Vitis rupestris ‘St. George.’ DsRNA was extracted from grapevines from California and Canada that indexed positive for rSP on St. George. Two distinct dsRNA species (B and C) (Mr = 5.3 × 106 and 4.4 × 106, respectively) were detected from the stem tissue of rSP-positive samples. Although similar dsRNA species (B and C) were detected in extracts of grapevines from New York, the association of dsRNA B and C with rSP in New York samples was not consistent. Also, eight different dsRNAs, known to be associated with the powdery mildew fungus, Uncinula necator, were detected in leaves of New York samples. In New York, the dsRNAs were not observed in leaves or stem samples collected from June through late August during the 1988 and 1989 growing seasons, suggesting that dsRNA detection in the grape tissue is variable throughout the season. We suggest that dsRNA species B and C are associated with rSP disease. The inconsistent results with New York samples are discussed.
Resumo:
Closteroviruslike particles, designated as grapevine corky bark-associated virus (GCBaV), were purified from mature leaves and stem phloem tissue of a corky bark-affected grapevine that had indexed negative for other grapevine viruses. Electron microscopy of purified preparations revealed the presence of flexuous rod-shaped viruslike particles that were about 13 nm in diameter and between 1,400 and 2,000 nm long, with a helical pitch of 3.4 nm. In purified preparations, the GCBaV particles degraded within a few weeks, unlike grapevine leafroll associated virus (GLRaV), which was stable for more than 1 mo under the same storage condition. The molecular weight of the coat protein of GCBaV was 24,000. A large dsRNA molecule (about 15.3 kbp), along with lower molecular weight species, was detected in tissues of corky bark-diseased grapevines, but not in healthy grapevines. Polyclonal antisera were produced in rabbits against purified or partially purified virus preparations. In direct enzyme-linked immunosorbent assay (ELISA), antisera to GCBaV did not react to the serologically distinct types (II and III) of the long closteroviruses associated with grapevine leafroll disease and grapevine virus A (GVA), and vice versa. This antiserum also reacted in ELISA with other corky bark-affected grapevines. Our data suggest that closteroviruslike particles, designated as GCBaV, may be the causal agent of corky bark disease. However, definitive proof is still lacking. The inclusion of GCBaV in the group of closteroviruses with citrus tristeza virus is proposed.