291 resultados para immunoglobulin production
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
About this book: Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including:key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity,ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate.The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.
Resumo:
A nutrient amendment experiment was conducted for two growing seasons in two alpine tundra communities to test the hypotheses that: (1) primary production is limited by nutrient availability, and (2) physiological and developmental constraints act to limit the responses of plants from a nutrient-poor community more than plants from a more nutrient-rich community to increases in nutrient availability. Experimental treatments consisted of N, P, and N+P amendments applied to plots in two physiognomically similar communities, dry and wet meadows. Extractable N and P from soils in nonfertilized control plots indicated that the wet meadow had higher N and P availability. Photosynthetic, nutrient uptake, and growth responses of the dominants in the two communities showed little difference in the relative capacity of these plants to respond to the nutrient additions. Aboveground production responses of the communities to the treatments indicated N availability was limiting to production in the dry meadow community while N and P availability colimited production in the wet meadow community. There was a greater production response to the N and N+P amendments in the dry meadow relative to the wet meadow, despite equivalent functional responses of the dominant species of both communities. The greater production response in the dry meadow was in part related to changes in community structure, with an increase in the proportion of graminoid and forb biomass, and a decrease in the proportion of community biomass made up by the dominant sedge Kobresia myosuroides. Species richness increased significantly in response to the N+P treatment in the dry meadow. Graminoid biomass increased significantly in the wet meadow N and N+P plots, while forb biomass decreased significantly, suggesting a competitive interaction for light. Thus, the difference in community response to nutrient amendments was not the result of functional changes at the leaf level of the dominant species, but rather was related to changes in community structure in the dry meadow, and to a shift from a nutrient to a light limitation of production in the wet meadow.
Resumo:
Matrix Metalloproteinases (MMP) play a key role in osteoarthritis (OA) development. The aim of the present study was to investigate whether, the cross-talk between subchondral bone osteoblasts (SBOs) and articular cartilage chondrocytes (ACCs) in OA alters the expression and regulation of MMPs, and also to test the potential involvement of mitogen activated protein kinase (MAPK) signalling pathway during this process.
Resumo:
In the knowledge era the importance of making space and place for knowledge production is clearly understood worldwide by many city administrations that are keen on restructuring their cities as highly competitive and creative places. Consequently, knowledge-based urban development and socio-spatial development of knowledge community precincts have taken their places among the emerging agendas of the urban planning and development practice. This chapter explores these emerging issues and scrutinizes the development of knowledge community precincts that have important economic, social and cultural dimensions on the formation of competitive and creative urban regions. The chapter also sheds light on the new challenges for planning discipline, and discusses the need for and some specifics of a new planning paradigm suitable for dealing with 21st Century’s socio-economic development and urbanization problems.
Resumo:
The power to influence others in ever-expanding social networks in the new knowledge economy is tied to capabilities with digital media production that require increased technological knowledge. This article draws on research in elementary classrooms to examine the repertoires of cross-disciplinary knowledge that literacy learners need to produce innovative digital media via the “social web”. The article builds on Learning by Design and the Knowledge Processes to describe “how” learning occurs, while presenting a model to theorise “what” students know – the Knowledge Assets – when learners produce digital and multimodal texts.
Resumo:
Reading and writing are being transformed by global changes in communication practices using new media technologies. This paper introduces iPed, a research-based pedagogy that enables teachers to navigate innovative digital text production in the literacy classroom. The pedagogy was generated in the context of a longitudinal digital literacy intervention in a school that services low-socioeconomic and ethnically diverse students. iPed synthesizes four key pedagogies that were salient in the analysis of over 180 hours of lesson observations – Link, Challenge, Co-Create, and Share. The strengths of the pedagogy include connecting to students’ home cultures, critical media literacy, collaborative and creative digital text production, and gaining cosmopolitan recognition within global communities.
Resumo:
There is a paucity of data on the distribution of Cicadellidae (leafhoppers) in Australia. This study quantifies the relative abundance, seasonal activity and diversity of leafhoppers in the Ovens Valley region of north-east Victoria, Australia. Species diversity and abundance was assessed at four field sites in and around the field borders of commercially grown tobacco crops using three sampling techniques (pan trap, sticky trap and sweep net). Over 51 000 leafhopper samples were collected, with 57 species from 11 subfamilies and 19 tribes identified. Greater numbers and diversity of leafhoppers were collected in yellow pan traps. The predominant leafhopper collected was Orosius orientalis (Matsumura). Twenty-three leafhopper species were recorded for the first time in Victoria and eight economically important pest species were recorded. Seasonal activity of selected leafhopper species, covering two sampling seasons, is presented.
Resumo:
This conference celebrates the passing of 40 years since the establishment of the Internet (dating this, presumably, to the first connection between two nodes on ARPANET in October 1969). For a gathering of media scholars such as this, however, it may be just as important not only to mark the first testing of the core technologies upon which much of our present‐day Net continues to build, but also to reflect on another recent milestone: the 20th anniversary of what is today arguably the chief interface through which billions around the world access and experience the Internet – the World Wide Web, launched by Tim Berners‐Lee in 1989.