836 resultados para Music Recommender Systems
Resumo:
In recommender systems based on multidimensional data, additional metadata provides algorithms with more information for better understanding the interaction between users and items. However, most of the profiling approaches in neighbourhood-based recommendation approaches for multidimensional data merely split or project the dimensional data and lack the consideration of latent interaction between the dimensions of the data. In this paper, we propose a novel user/item profiling approach for Collaborative Filtering (CF) item recommendation on multidimensional data. We further present incremental profiling method for updating the profiles. For item recommendation, we seek to delve into different types of relations in data to understand the interaction between users and items more fully, and propose three multidimensional CF recommendation approaches for top-N item recommendations based on the proposed user/item profiles. The proposed multidimensional CF approaches are capable of incorporating not only localized relations of user-user and/or item-item neighbourhoods but also latent interaction between all dimensions of the data. Experimental results show significant improvements in terms of recommendation accuracy.
Resumo:
Grid music systems provide discrete geometric methods for simplified music-making by providing spatialised input to construct patterned music on a 2D matrix layout. While they are conceptually simple, grid systems may be layered to enable complex and satisfying musical results. Grid music systems have been applied to a range of systems from small portable devices up to larger systems. In this paper we will discuss the use of grid music systems in general and present an overview of the HarmonyGrid system we have developed as a new interactive performance system. We discuss a range of issues related to the design and use of larger-scale grid- based interactive performance systems such as the HarmonyGrid.
Resumo:
Music is inherently active and interactive. Like technologies before them, digital systems provide a range of enhanced music performance opportunities. In this paper we outline the educational advantages of ensemble performance in which generative media systems are integrated. As a concrete example, we focus on our work with the jam2jam system which uses generative music processes to enhance collaborative music making. We suggest that our research points toward a new class of activities that maintain the well established benefits of ensemble performance while adding cultural and pedagogical value by leveraging the capabilities and cachet of digital media practices.
Resumo:
This research explores music in space, as experienced through performing and music-making with interactive systems. It explores how musical parameters may be presented spatially and displayed visually with a view to their exploration by a musician during performance. Spatial arrangements of musical components, especially pitches and harmonies, have been widely studied in the literature, but the current capabilities of interactive systems allow the improvisational exploration of these musical spaces as part of a performance practice. This research focuses on quantised spatial organisation of musical parameters that can be categorised as grid music systems (GMSs), and interactive music systems based on them. The research explores and surveys existing and historical uses of GMSs, and develops and demonstrates the use of a novel grid music system designed for whole body interaction. Grid music systems provide plotting of spatialised input to construct patterned music on a two-dimensional grid layout. GMSs are navigated to construct a sequence of parametric steps, for example a series of pitches, rhythmic values, a chord sequence, or terraced dynamic steps. While they are conceptually simple when only controlling one musical dimension, grid systems may be layered to enable complex and satisfying musical results. These systems have proved a viable, effective, accessible and engaging means of music-making for the general user as well as the musician. GMSs have been widely used in electronic and digital music technologies, where they have generally been applied to small portable devices and software systems such as step sequencers and drum machines. This research shows that by scaling up a grid music system, music-making and musical improvisation are enhanced, gaining several advantages: (1) Full body location becomes the spatial input to the grid. The system becomes a partially immersive one in four related ways: spatially, graphically, sonically and musically. (2) Detection of body location by tracking enables hands-free operation, thereby allowing the playing of a musical instrument in addition to “playing” the grid system. (3) Visual information regarding musical parameters may be enhanced so that the performer may fully engage with existing spatial knowledge of musical materials. The result is that existing spatial knowledge is overlaid on, and combined with, music-space. Music-space is a new concept produced by the research, and is similar to notions of other musical spaces including soundscape, acoustic space, Smalley's “circumspace” and “immersive space” (2007, 48-52), and Lotis's “ambiophony” (2003), but is rather more textural and “alive”—and therefore very conducive to interaction. Music-space is that space occupied by music, set within normal space, which may be perceived by a person located within, or moving around in that space. Music-space has a perceivable “texture” made of tensions and relaxations, and contains spatial patterns of these formed by musical elements such as notes, harmonies, and sounds, changing over time. The music may be performed by live musicians, created electronically, or be prerecorded. Large-scale GMSs have the capability not only to interactively display musical information as music representative space, but to allow music-space to co-exist with it. Moving around the grid, the performer may interact in real time with musical materials in music-space, as they form over squares or move in paths. Additionally he/she may sense the textural matrix of the music-space while being immersed in surround sound covering the grid. The HarmonyGrid is a new computer-based interactive performance system developed during this research that provides a generative music-making system intended to accompany, or play along with, an improvising musician. This large-scale GMS employs full-body motion tracking over a projected grid. Playing with the system creates an enhanced performance employing live interactive music, along with graphical and spatial activity. Although one other experimental system provides certain aspects of immersive music-making, currently only the HarmonyGrid provides an environment to explore and experience music-space in a GMS.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
In order to create music, the student must establish a relationship with the musical materials. In this thesis, I examine the capacity of a generative music system called jam2jam to offer individuals a virtual musical play-space to explore. I outline the development of an iteration of software development named jam2jam blue and the evolution of a games-like user interface in the research design that jointly revealed the nature of this musical exploration. The findings suggest that the jam2jam blue interface provided an expressive gestural instrument to jam and experience musicmaking. By using the computer as an instrument, participants in this study were given access to meaningful musical experiences in both solo and ensemble situations and the researcher is allowed a view of their development of a relationship with the musical materials from the perspective of the individual participants. Through an iterative software development methodology, pedagogy and experience design were created simultaneously. The research reveals the potential for the jam2jam software to be used as a reflective tool for feedback and assessment purposes. The power of access to ensemble music making is realised though the participants’ virtual experiences which are brought into their physical space by sharing their experience with others. It is suggested that this interaction creates an environment conducive to self-initiated learning in which music is the language of interaction. The research concludes that the development of a relationship between the explorer and the musical materials is subject to the collaborative nature of the interaction through which the music is experienced.
Resumo:
We advocate for the use of predictive techniques in interactive computer music systems. We suggest that the inclusion of prediction can assist in the design of proactive rather than reactive computational performance partners. We summarize the significant role prediction plays in human musical decisions, and the only modest use of prediction in interactive music systems to date. After describing how we are working toward employing predictive processes in our own metacreation software we reflect on future extensions to these approaches.
Resumo:
Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise. This paper examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensemble with very little musical knowledge or skill and they further offer the possibility of unique interactive relationships with artists and musical knowledge through collaborative performance. In this presentation I will focus on demonstrating how these simulated experiences might lead to understandings that may be of educational and social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to view video artifacts that demonstrate an interactive relationship with artists.
Resumo:
An issue on generative music in Contemporary Music Review allows space to explore many of these controversies, and to explore the rich algorithmic scene in contemporary practice, as well as the diverse origins and manifestations of such a culture. A roster of interesting exponents from both academic and arts practice backgrounds are involved, matching the broad spectrum of current work. Contributed articles range from generative algorithms in live systems, from live coding to interactive music systems to computer games, through algorithmic modelling of longer-term form, evolutionary algorithms, to interfaces between modalities and mediums, in algorithmic choreography. A retrospective on the intensive experimentation into algorithmic music and sound synthesis at the Institute of Sonology in the 1960s and 70s creates a complementary strand, as well as an open paper on the issues raised by open source, as opposed to proprietary, software and operating systems, with consequences in the creation and archiving of algorithmic work.
Resumo:
There are many interactive media systems, including computer games and media art works, in which it is desirable for music to vary in response to changes in the environment. In this paper we will outline a range of algorithmic techniques that enable music to adapt to such changes, taking into account the need for the music to vary in its expressiveness or mood while remaining coherent and recognisable. We will discuss the approaches which we have arrived at after experience in a range of adaptive music systems over recent years, and draw upon these experiences to inform discussion of relevant considerations and to illustrate the techniques and their effect.
Resumo:
Generative music systems can be performed by manipulating the values of their algorithmic parameters, and their semi-autonomous nature provides an opportunity for coordinated interaction amongst a network of systems, a practice we call Network Jamming. This paper outlines the characteristics of this networked performance practice and discusses the types of mediated musical relationships and ensemble configurations that can arise. We have developed and tested the jam2jam network jamming software over recent years. We describe this system, draw from our experiences with it, and use it to illustrate some characteristics of Network Jamming.
Resumo:
In this research I have examined how ePortfolios can be designed for Music postgraduate study through a practice led research enquiry. This process involved designing two Web 2.0 ePortfolio systems for a group of five post graduate music research students. The design process revolved around the application of an iterative methodology called Software Develop as Research (SoDaR) that seeks to simultaneously develop design and pedagogy. The approach to designing these ePortfolio systems applied four theoretical protocols to examine the use of digitised artefacts in ePortfolio systems to enable a dynamic and inclusive dialogue around representations of the students work. The research and design process involved an analysis of existing software and literature with a focus upon identifying the affordances of available Web 2.0 software and the applications of these ideas within 21st Century life. The five post graduate music students each posed different needs in relation to the management of digitised artefacts and the communication of their work amongst peers, supervisors and public display. An ePortfolio was developed for each of them that was flexible enough to address their needs within the university setting. However in this first SoDaR iteration data gathering phase I identified aspects of the university context that presented a negative case that impacted upon the design and usage of the ePortfolios and prevented uptake. Whilst the portfolio itself functioned effectively, the university policies and technical requirements prevented serious use. The negative case analysis of the case study found revealed that Access and Control and Implementation, Technical and Policy Constraints protocols where limiting user uptake. From the semistructured interviews carried out as part of this study participant feedback revealed that whilst the participants did not use the ePortfolio system I designed, each student was employing Web 2.0 social networking and storage processes in their lives and research. In the subsequent iterations I then designed a more ‘ideal’ system that could be applied outside of the University context that draws upon the employment of these resources. In conclusion I suggest recommendations about ePortfolio design that considers what the applications of the theoretical protocols reveal about creative arts settings. The transferability of these recommendations are of course dependent upon the reapplication of the theoretical protocols in a new context. To address the mobility of ePortfolio design between Institutions and wider settings I have also designed a prototype for a business card sized USB portal for the artists’ ePortfolio. This research project is not a static one; it stands as an evolving design for a Web 2.0 ePortfolio that seeks to refer to users needs, institutional and professional contexts and the development of software that can be incorporated within the design. What it potentially provides to creative artist is an opportunity to have a dialogue about art with artefacts of the artist products and processes in that discussion.
Resumo:
Music making affects relationships with self and others by generating a sense of belonging to a culture or ideology (Bamford, 2006; Barovick, 2001; Dillon & Stewart, 2006; Fiske, 2000; Hallam, 2001). Whilst studies from arts education research present compelling examples of these relationships, others argue that they do not present sufficiently validated evidence of a causal link between music making experiences and cognitive or social change (Winner & Cooper, 2000; Winner & Hetland, 2000a, 2000b, 2001). I have suggested elsewhere that this disconnection between compelling evidence and observations of the effects of music making are in part due to the lack of rigor in research and the incapacity of many methods to capture these experiences in meaningful ways (Dillon, 2006). Part of the answer to these questions about rigor and causality lay in the creative use of new media technologies that capture the results of relationships in music artefacts. Crucially, it is the effective management of these artefacts within computer systems that allows researchers and practitioners to collect, organize, analyse and then theorise such music making experiences.