395 resultados para Ecological niche modeling
Resumo:
The aim of this paper is to show how principles of ecological psychology and dynamical systems theory can underpin a philosophy of coaching practice in a nonlinear pedagogy. Nonlinear pedagogy is based on a view of the human movement system as a nonlinear dynamical system. We demonstrate how this perspective of the human movement system can aid understanding of skill acquisition processes and underpin practice for sports coaches. We provide a description of nonlinear pedagogy followed by a consideration of some of the fundamental principles of ecological psychology and dynamical systems theory that underpin it as a coaching philosophy. We illustrate how each principle impacts on nonlinear pedagogical coaching practice, demonstrating how each principle can substantiate a framework for the coaching process.
Resumo:
Process modeling grammars are used by analysts to describe information systems domains in terms of the business operations an organization is conducting. While prior research has examined the factors that lead to continued usage behavior, little knowledge has been established as to what extent characteristics of the users of process modeling grammars inform usage behavior. In this study, a theoretical model is advanced that incorporates determinants of continued usage behavior as well as key antecedent individual difference factors of the grammar users, such as modeling experience, modeling background and perceived grammar familiarity. Findings from a global survey of 529 grammar users support the hypothesized relationships of the model. The study offers three central contributions. First, it provides a validated theoretical model of post-adoptive modeling grammar usage intentions. Second, it discusses the effects of individual difference factors of grammar users in the context of modeling grammar usage. Third, it provides implications for research and practice.
Resumo:
In recent years, cities show increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning human needs are supplied while natural resources are used in the most effective and sustainable manner. And the maintenance of ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, the paper briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, the paper defines the conceptual framework of a new method for developing sustainable urban ecosystems through ecological planning approach. In the future of the research, this model will be developed as a guideline for the assessment of the ecological sustainability in built environments.
Resumo:
Since the industrial revolution, the development of a lifestyle lived predominantly indoors has resulted in less contact with nature. Research over the last twenty years has gradually been identifying the human health benefits attributed to re-connecting with the natural environment. The significance of feeling connected to natural environments, families and friends are described as a foundational requirement for human health and wellbeing (Maller et al., 2008). Also, the early findings of Schultz‟s (2002) work indicated that by feeling connected to the natural world a person is more likely to be committed to positively interact with and protect the natural world. Research on young people has indicated that young people are even more disconnected from the natural world. Leading some writers to call this disconnection a crisis termed “Nature Deficit Disorder.” Participants (n = 131) from 1st year university Physical Education and Human Movement Studies were asked to complete two questionnaires the Connectedness to Nature scale (CNS) (Mayer & Frantz, 2004) and the New Ecological Paradigm Scale (NEP) (Dunlap, Van Liere, Mertig, & Jones, 2000). The NEP and CNS are two scales most commonly used to explore beliefs and feelings of connectedness to the natural world (Schultz, 2002). The NEP was developed over thirty years ago by Dunlap and Van Liere (1978) and originally termed the New Environmental Paradigm. The NEP is now the foremost International tool for measuring beliefs about the natural world (Dunlap, 2008). The CNS measures an individual‟s trait levels of emotional connection to the natural world. It is a relatively new tool for understanding ecological behaviour based on ecopsychology theory and employed to predict behaviour (Mayer and Frantz, 2004). Both questionnaires are based on a 1-5 scale (Strongly disagree to Strongly agree). By combing both scales the researchers aim to develop a snap shot of beliefs and emotional feelings towards the natural world and therefore an idea of intended behaviour. The two questionnaires were combined as one online survey with additional material asking for demographics and self assessments of type of leader included before the surveys. An email inviting outdoor leaders to participate was sent out to networks and interest groups. A basic descriptive statistical analysis was used to interpret data.
Resumo:
This article explores the notion of ecological sustainability in the context of public health education and the contribution Universities can make in creating environments that include ecologically sustainable practices. It considers the important role of environmental health in building a sustainable future for the population as a central plank of public health. It presents the evidence for the need for comprehensive approaches to ecological sustainability within the University and offers suggestions about how this can take place. It concludes by arguing that to date there is a substantial gap between the rhetoric and the reality in the University context.
Resumo:
Privacy enhancing protocols (PEPs) are a family of protocols that allow secure exchange and management of sensitive user information. They are important in preserving users’ privacy in today’s open environment. Proof of the correctness of PEPs is necessary before they can be deployed. However, the traditional provable security approach, though well established for verifying cryptographic primitives, is not applicable to PEPs. We apply the formal method of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various security properties of PIEMCP using state space analysis techniques. This investigation provides us with preliminary insights for modeling and verification of PEPs in general, demonstrating the benefit of applying the CPN-based formal approach to proving the correctness of PEPs.
Resumo:
Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.
Resumo:
Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility.
Resumo:
Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.
Resumo:
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.
Resumo:
Determining the ecologically relevant spatial scales for predicting species occurrences is an important concept when determining species–environment relationships. Therefore species distribution modelling should consider all ecologically relevant spatial scales. While several recent studies have addressed this problem in artificially fragmented landscapes, few studies have researched relevant ecological scales for organisms that also live in naturally fragmented landscapes. This situation is exemplified by the Australian rock-wallabies’ preference for rugged terrain and we addressed the issue of scale using the threatened brush-tailed rock-wallaby (Petrogale penicillata) in eastern Australia. We surveyed for brush-tailed rock-wallabies at 200 sites in southeast Queensland, collecting potentially influential site level and landscape level variables. We applied classification trees at either scale to capture a hierarchy of relationships between the explanatory variables and brush-tailed rock-wallaby presence/absence. Habitat complexity at the site level and geology at the landscape level were the best predictors of where we observed brush-tailed rock-wallabies. Our study showed that the distribution of the species is affected by both site scale and landscape scale factors, reinforcing the need for a multi-scale approach to understanding the relationship between a species and its environment. We demonstrate that careful design of data collection, using coarse scale spatial datasets and finer scale field data, can provide useful information for identifying the ecologically relevant scales for studying species–environment relationships. Our study highlights the need to determine patterns of environmental influence at multiple scales to conserve specialist species such as the brush-tailed rock-wallaby in naturally fragmented landscapes.
Resumo:
Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.
Resumo:
Rodenticide use in agriculture can lead to the secondary poisoning of avian predators. Currently the Australian sugarcane industry has two rodenticides, Racumin® and Rattoff®, available for in-crop use but, like many agricultural industries, it lacks an ecologically-based method of determining the potential secondary poisoning risk the use of these rodenticides poses to avian predators. The material presented in this thesis addresses this by: a. determining where predator/prey interactions take place in sugar producing districts; b. quantifying the amount of rodenticide available to avian predators and the probability of encounter; and c. developing a stochastic model that allows secondary poisoning risk under various rodenticide application scenarios to be investigated. Results demonstrate that predator/prey interactions are highly constrained by environmental structure. Rodents used crops that provided high levels of canopy cover and therefore predator protection and poorly utilised open canopy areas. In contrast, raptors over-utilised areas with low canopy cover and low rodent densities, but which provided high accessibility to prey. Given this pattern of habitat use, and that industry baiting protocols preclude rodenticide application in open canopy crops, these results indicate that secondary poisoning can only occur if poisoned rodents leave closed canopy crops and become available for predation in open canopy areas. Results further demonstrate that after in-crop rodenticide application, only a small proportion of rodents available in open areas are poisoned and that these rodents carry low levels of toxicant. Coupled with the low level of rodenticide use in the sugar industry, the high toxic threshold raptors have to these toxicants and the low probability of encountering poisoned rodents, results indicate that the risk of secondary poisoning events occurring is minimal. A stochastic model was developed to investigate the effect of manipulating factors that might influence secondary poisoning hazard in a sugarcane agro-ecosystem. These simulations further suggest that in all but extreme scenarios, the risk of secondary poisoning is also minimal. Collectively, these studies demonstrate that secondary poisoning of avian predators associated with the use of the currently available rodenticides in Australian sugar producing districts is minimal. Further, the ecologically-based method of assessing secondary poisoning risk developed in this thesis has broader applications in other agricultural systems where rodenticide use may pose risks to avian predators.