679 resultados para Self-imaging
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Resumo:
A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.
Resumo:
Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.
Resumo:
Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si1-xC x; x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si1-xCx QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.
Resumo:
The influence of electron heating in the high-frequency surface polariton (SP) field on the dispersion properties of the SPs considered is investigated. High frequency SPs propagate at the interface between an n-type semiconductor with finite electron pressure, and a metal. The nonlinear dispersion relation for the SPs is derived and investigated.
Resumo:
The paper presents an investigation of self-organizational and -assembly processes of nanostructure growth on surfaces exposed to low-temperature plasmas. We have considered three main growth stages-initial, or sub-monolayer growth stage, separate nanostructure growth stage, and array growth stages with the characteristic sizes of several nm, several tens of nm, and several hundreds of nm, respectively, and have demonstrated, by the experimental data and hybrid multiscale numerical simulations, that the plasma parameters can strongly influence the surface processes and hence the kinetics of self-organization and -assembly. Our results show that plasma-controlled self-organization is a promising way to assemble large regular arrays of nanostructures. © 2008 IUPAC.
Resumo:
Examples of successful fabrication of low-dimensional semiconducting nanomaterials in the Integrated Plasma-Aided Nanofabrication Facility are shown. Self-assembled size-uniform ZnO nanoparticles, ultra-high-aspect ratio Si nanowires, vertically aligned cadmium sulfide nanostructures, and quarternary semiconducting SiCAlN nanomaterial have been synthesized using inductively coupled plasma-assisted RF magnetron sputtering deposition. The observed increase in crystallinity and growth rates of the nanostructures are explained by using a model of plasma-enhanced adatom surface diffusion under conditions of local energy exchange between the ion flux and the growth surface. Issues related to plasma-based growth of low-dimensional semiconducting nanomaterials are discussed as well. © 2007 Elsevier B.V. All rights reserved.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.
Resumo:
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.
Resumo:
The non-linear self-interaction of the potential surface polaritons (SP) which is due to the free carriers dispersion law where nonparabolicity is studied. The SP propagate at the interface between n-type semiconductor and a metal. The self interaction of the SP is shown to be different in semiconductors with normal and inverse zone structures. The results of the SP field envelope evolution are given. The obtained nonlinear frequency shift has been compared with shifts which are due to another self-interaction mechanisms. This comparison shows that the nonlinear self-interaction mechanism, which is due to free carriers spectrum nonparabolicity, is especially significant in narrow-gap semiconductor materials.
Resumo:
We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.
Resumo:
The self-modulation process of a high-frequency surface wave (SW) in a wave-guiding structure - a semibounded magnetoactive plasma and perfectly conducting metal wall - is considered for the weak nonlinearity approximation. Estimates are given for the contributions to the nonlinear frequency shift of the SW from the two principal self-action channels: via the generation of a signal of the doubled frequency and of static surface perturbations, arising as the result of the action of a ponderomotive force. Solutions for the field envelope of the nonlinear wave are examined with regard to their stability with respect to longitudinal and transverse perturbations.