568 resultados para Australian Curriculum cross curriculum priorities
Resumo:
The vision of a digital earth (DE) is continuously evolving, and the next-generation infrastructures, platforms and applications are being implemented. In this article, we attempt to initiate a debate within the DE and with affine communities about 'why' a digital earth curriculum (DEC) is needed, 'how' it should be developed, and 'what' it could look like. It is impossible to do justice to the Herculean effort of DEC development without extensive consultations with the broader community. We propose a frame for the debate (what, why, and how of a DEC) and a rationale for and elements of a curriculum for educating the coming generations of digital natives and indicate possible realizations. We particularly argue that a DEC is not a déjà vu of classical research and training agendas of geographic information science, remote sensing, and similar fields by emphasizing its unique characteristics.
Resumo:
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc. The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc.
Resumo:
Consensus was developed by the remote sensing community during the 1980s and early 1990s regarding the need for an organized approach to teaching remote sensing fundamentals for collegiate institutions. Growth of the remote sensing industry might be seriously hampered without concerted efforts to bolster the capacity to teach state-of-the-practice remote sensing theory and practice to the next generation of professionals. A concerted effort of educators, researchers, government, and industry began in 1992 to meet these demands leading to the creation of the Remote Sensing Core Curriculum. The RSCC is currently sustained by cooperative efforts of the ASPRS, ICRSE, NASA, NCGIA, and others in the remote sensing community. Growth of the RSCC into the K-12 community resulted from its Internet teaching foundation that enables comprehensive and response reference links to the whole of the education community.
Resumo:
Responding to the global and unprecedented challenge of capacity building for twenty-first century life, this book is a practical guide for tertiary education institutions to quickly and effectively renew the curriculum towards education for sustainable development. The book begins by exploring why curriculum change has been so slow. It then describes a model for rapid curriculum renewal, highlighting the important roles of setting timeframes, formal and informal leadership, and key components and action strategies. The second part of the book provides detailed coverage of six core elements that have been trialled and peer reviewed by institutions around the world: - raising awareness among staff and students - mapping graduate attributes - auditing the curriculum - developing niche degrees, flagship courses and fully integrated programs - engaging and catalysing community and student markets - integrating curriculum with green campus operations. With input from more than seventy academics and grounded in engineering education experiences, this book will provide academic staff with tools and insights to rapidly align program offerings with the needs of present and future generations of students.
Resumo:
Despite decades of attempts to embed sustainability within higher education, literature clearly suggests that highly regulated disciplines such as engineering have been relatively slow to incorporate sustainability knowledge and skill areas, and are generally poorly prepared to do so. With current efforts, it is plausible that sustainability could take another two decades to be embedded within the curriculum. Within this context, this paper presents a whole system approach to implement systematic, intentional and timely curriculum renewal that is responsive to emerging challenges and opportunities, encompassing curriculum and organizational change. The paper begins by considering the evolution of curriculum renewal processes, documenting a number of whole system considerations that have been empirically distilled from literature, case studies, pilot trials, and a series of workshops with built environment educators from around the world over the last decade. The paper outlines a whole-of-institution curriculum renewal approach to embedding sustainability knowledge and skills within the DNA of the institutional offerings. The paper concludes with a discussion of research and practice implications for the field of education research, within and beyond higher education.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across two industry sectors, namely, mining and aerospace. The aim was to provide knowledge appropriate for students moving from school to the workplace in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
The Australian Government’s Skills for the Carbon Challenge (SCC) initiative aims to accelerate industry and the education sectors response to climate change. As part of the SCC initiative, the Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) provided funding to investigate the state of energy efficiency education in engineering-related Australian Technical and Further Education (TAFE) Programs. The following document reports on the outcomes of a multi-stage consultation project that engaged with participants from over 80% of TAFE institutions across Australia with the aim of supporting and enhancing future critical skills development in this area. Specifically, this report presents the findings of a national survey, based on a series of TAFE educator focus groups, conducted in May 2013 aimed at understanding the experiences and insights of Australian TAFE educators teaching engineering-related courses. Responses were received from 224 TAFE Educators across 50 of the 61 TAFE institutions in Australia (82% response rate).
Resumo:
Literature from around the world clearly suggests that engineering education has been relatively slow to incorporate significant knowledge and skill areas, including the rapidly emerging area of sustainable development. Within this context, this paper presents the findings of research that questioned how engineering educators could consistently implement systematic and intentional curriculum renewal that is responsive to emerging engineering challenges and opportunities. The paper presents a number of elements of systematic and intentional curriculum renewal that have been empirically distilled from a qualitative multiple-method iterative research approach including literature review, narrative enquiry, pilot trials and peer-review workshops undertaken by the authors with engineering educators from around the world. The paper also presents new knowledge arising from the research, in the form of a new model that demonstrates a dynamic and deliberative mechanism for strategically accelerating for curriculum renewal efforts. Specifically the paper discusses implications of this model to achieve education for sustainable development, across all disciplines of engineering. It concludes with broader research and practice implications for the field of education research.
Resumo:
This paper describes the Teaching Teachers of the Future (TTF) Project – a national project funded ($8.8mil AUD) by the Australian Government. The project was aimed at building the capacity of student teachers to use technology to improve student learning outcomes. It discusses the aims and objectives of the project, its genesis in a changing educational and political landscape, the use of TPACK as a theoretical scaffold, and briefly reports on the operations of the various components and part-ners. Further, it discusses the research opportunities afforded by the project includ-ing a national survey of all PSTs in Australia gauging their TPACK confidence and the use of the Most Significant Change (MSC) methodology. Finally the paper dis-cusses the outcomes of the project and its future.
Resumo:
This report documents the outcomes of the OLT funded project on Supporting Future Curriculum Leaders in Embedding Indigenous Knowledges on Teaching Practicum. This project investigated the learning and teaching relationships between pre-service teachers and their supervisors on practicum, with pre-service teachers who were specifically engaged (Aboriginal and Torres Strait Islander and non-Indigenous pre-service teachers studying the Indigenous Studies minor) with embedding Indigenous knowledge and perspectives in their teaching practice. It explored the negotiations of expectations, role modelling and the interactions that occur between pre-service teachers, their supervising teachers and QUT staff involved in supporting teaching practicum. The intent was to design a model to develop long term, future-oriented opportunities for teachers to develop expertise in embedding Indigenous knowledge and perspectives in curriculum, pedagogy and assessment.
Resumo:
Background This study evaluated the effect of a “move and learn” curriculum on physical activity (PA) in 3- to 5-year-olds attending a half-day preschool program. Methods Classrooms were randomized to receive an 8-week move and learn program or complete their usual curriculum. In intervention classes, opportunities for PA were integrated into all aspects of the preschool curriculum, including math, science, language arts, and nutrition education. Changes in PA were measured objectively using accelerometry and direct observation. Results At the completion of the 8-week intervention, children completing the move and learn curriculum exhibited significantly higher levels of classroom moderate-to-vigorous physical activity (MVPA) than children completing their usual curriculum. Significant differences were also noted for classroom VPA over the final 2 weeks. Conclusion The results suggest that integrating movement experiences into an existing early childhood curriculum is feasible and a potentially effective strategy for promoting PA in preschool children.
Resumo:
At the 2012 CDIO conference, it was clear to all that engineering for 21st Century challenges and opportunities will be critical to the success of society over the next 2-3 decades, in dealing with pressures including climate change, resource depletion and urban densification. Within this context there is a growing imperative for rapid curriculum renewal towards education for sustainable development across all types and disciplines of engineering education, around the world. Building on a paper presented by these authors at the 2012 CDIO conference, this 2013 roundtable will draw on participants’ experiences to discuss how sustainability knowledge and skills can be embedded within a CDIO-based program using a holistic approach to curriculum renewal. The highly interactive and dynamic session will include two parts: 1) a short presentation from the chairs of the roundtable on an emergent model for rapid curriculum renewal; and 2) a facilitated discussion with participants about challenges and opportunities for action. Session notes will be recorded for distribution among participants following the conference.
Resumo:
This DVD describes a curriculum project embedded into the subject The Global Teacher (code: CLB049/LCB327, Faculty of Education, Queensland University of Technology). The Global Teacher is a subject within the undergraduate degree program for pre-service teachers and provides a global perspective on socio-political issues that shape education. The curriculum in The Global Teacher was designed around a collaborative partnership between Queensland University of Technology and State Library Queensland. Through this collaboration, State Library became not only a resource for information, but also helped to develop the pedagogical skills of the pre-service teaachers by guiding them in exhibiting and curating Global Teacher themes for a broader community-based audience. The collaboration became part of the assessment for The Global Teacher, requiring the pre-service teachers to visually translate their understandings of global educational issues into a public exhibition, which was held at State Library Queensland on 1st May, 2013. This DVD is a creative work explaining the stages of this collaborative project. It explores the learning outcomes achieved, using the voices of participants: the pre-service teachers, the QUT teacher educators and staff of State Library Queensland. A detailed description of this project is to be found at: http://libguides.library.qut.edu.au/content.php?pid=595206&sid=4908024&preview=1b455ed4f2c606d19702090f85d1f965
Resumo:
Is there a crisis in Australian science and mathematics education? Declining enrolments in upper secondary Science and Mathematics courses have gained much attention from the media, politicians and high-profile scientists over the last few years, yet there is no consensus amongst stakeholders about either the nature or the magnitude of the changes. We have collected raw enrolment data from the education departments of each of the Australian states and territories from 1992 to 2012 and analysed the trends for Biology, Chemistry, Physics, two composite subject groups (Earth Sciences and Multidisciplinary Sciences), as well as entry, intermediate and advanced Mathematics. The results of these analyses are discussed in terms of participation rates, raw enrolments and gender balance. We have found that the total number of students in Year 12 increased by around 16% from 1992 to 2012 while the participation rates for most Science and Mathematics subjects, as a proportion of the total Year 12 cohort, fell (Biology (-10%), Chemistry (-5%), Physics (-7%), Multidisciplinary Science (-5%), intermediate Mathematics (-11%), advanced Mathematics (-7%) in the same period. There were increased participation rates in Earth Sciences (+0.3%) and entry Mathematics (+11%). In each case the greatest rates of change occurred prior to 2001 and have been slower and steadier since. We propose that the broadening of curriculum offerings, further driven by students' self-perception of ability and perceptions of subject difficulty and usefulness, are the most likely cause of the changes in participation. While these continuing declines may not amount to a crisis, there is undoubtedly serious cause for concern.